音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Pytorch 中的optimizer使用说明
日期:2021-09-08 13:40:20   来源:脚本之家

与优化函数相关的部分在torch.optim模块中,其中包含了大部分现在已有的流行的优化方法。

如何使用Optimizer

要想使用optimizer,需要创建一个optimizer 对象,这个对象会保存当前状态,并根据梯度更新参数。

怎样构造Optimizer

要构造一个Optimizer,需要使用一个用来包含所有参数(Tensor形式)的iterable,把相关参数(如learning rate、weight decay等)装进去。

注意,如果想要使用.cuda()方法来将model移到GPU中,一定要确保这一步在构造Optimizer之前。因为调用.cuda()之后,model里面的参数已经不是之前的参数了。

示例代码如下:

optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)
optimizer = optim.Adam([var1, var2], lr = 0.0001)

常用参数

last_epoch代表上一次的epoch的值,初始值为-1。

单独指定参数

也可以用一个dict的iterable指定参数。这里的每个dict都必须要params这个key,params包含它所属的参数列表。除此之外的key必须它的Optimizer(如SGD)里面有的参数。

You can still pass options as keyword arguments. They will be used as defaults, in the groups that didn't override them. This is useful when you only want to vary a single option, while keeping all others consistent between parameter groups.

这在针对特定部分进行操作时很有用。比如只希望给指定的几个层单独设置学习率:

optim.SGD([
  {'params': model.base.parameters()},
  {'params': model.classifier.parameters(), 'lr': 0.001}
  ],
  
  lr = 0.01, momentum = 0.9)

在上面这段代码中model.base将会使用默认学习率0.01,而model.classifier的参数蒋欢使用0.001的学习率。

怎样进行单次优化

所有optimizer都实现了step()方法,调用这个方法可以更新参数,这个方法有以下两种使用方法:

optimizer.step()

多数optimizer里都可以这么做,每次用backward()这类的方法计算出了梯度后,就可以调用一次这个方法来更新参数。

示例程序:

for input, target in dataset:
 optimizer.zero_grad()
 ouput = model(input)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()

optimizer.step(closure)

有些优化算法会多次重新计算函数(比如Conjugate Gradient、LBFGS),这样的话你就要使用一个闭包(closure)来支持多次计算model的操作。

这个closure的运行过程是,清除梯度,计算loss,返回loss。

(这个我不太理解,因为这些优化算法不熟悉)

示例程序:

for input, target in dataset:
  def closure():
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    return loss
  optimizer.step(closure)

优化算法

这里就不完整介绍documentation中的内容了,只介绍基类。具体的算法的参数需要理解它们的原理才能明白,这个改天单独来一篇文章介绍。

Optimizer

 class torch.optim.Optimizer(params, defaults)

这是所有optimizer的基类。

注意,各参数的顺序必须保证每次运行都一致。有些数据结构就不满足这个条件,比如dictionary的iterator和set。

参数

params(iterable)是torch.Tensor或者dict的iterable。这个参数指定了需要更新的Tensor。

defaults(dict)是一个dict,它包含了默认的的优化选项。

方法

add_param_group(param_group)

这个方法的作用是增加一个参数组,在fine tuning一个预训练的网络时有用。

load_state_dict(state_dict)

这个方法的作用是加载optimizer的状态。

state_dict()

获取一个optimizer的状态(一个dict)。

zero_grad()方法用于清空梯度。

step(closure)用于进行单次更新。

Adam

class torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)

补充:pytorch里面的Optimizer和optimizer.step()用法

当我们想指定每一层的学习率时:

optim.SGD([
          {'params': model.base.parameters()},
          {'params': model.classifier.parameters(), 'lr': 1e-3}
        ], lr=1e-2, momentum=0.9)

这意味着model.base的参数将会使用1e-2的学习率,model.classifier的参数将会使用1e-3的学习率,并且0.9的momentum将会被用于所有的参数。

进行单次优化

所有的optimizer都实现了step()方法,这个方法会更新所有的参数。它能按两种方式来使用:

optimizer.step()

这是大多数optimizer所支持的简化版本。一旦梯度被如backward()之类的函数计算好后,我们就可以调用这个函数。

例子

for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
optimizer.step(closure)

一些优化算法例如Conjugate Gradient和LBFGS需要重复多次计算函数,因此你需要传入一个闭包去允许它们重新计算你的模型。

这个闭包应当清空梯度,计算损失,然后返回。

例子:

for input, target in dataset:
  def closure():
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    return loss
  optimizer.step(closure)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程