音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

tensorflow2.0实现复杂神经网络(多输入多输出nn,Resnet)
日期:2021-09-08 13:43:37   来源:脚本之家

常见的‘融合'操作

复杂神经网络模型的实现离不开"融合"操作。常见融合操作如下:

(1)求和,求差

# 求和
layers.Add(inputs)
# 求差
layers.Subtract(inputs)

inputs: 一个输入张量的列表(列表大小至少为 2),列表的shape必须一样才能进行求和(求差)操作。

例子:

input1 = keras.layers.Input(shape=(16,))
x1 = keras.layers.Dense(8, activation='relu')(input1)
input2 = keras.layers.Input(shape=(32,))
x2 = keras.layers.Dense(8, activation='relu')(input2)
added = keras.layers.add([x1, x2])

out = keras.layers.Dense(4)(added)
model = keras.models.Model(inputs=[input1, input2], outputs=out)

(2)乘法

# 输入张量的逐元素乘积(对应位置元素相乘,输入维度必须相同)
layers.multiply(inputs)
# 输入张量样本之间的点积
layers.dot(inputs, axes, normalize=False) 

dot即矩阵乘法,例子1:

x = np.arange(10).reshape(1, 5, 2)

y = np.arange(10, 20).reshape(1, 2, 5)

# 三维的输入做dot通常像这样指定axes,表示矩阵的第一维度和第二维度参与矩阵乘法,第0维度是batchsize
tf.keras.layers.Dot(axes=(1, 2))([x, y])
# 输出如下:
<tf.Tensor: shape=(1, 2, 2), dtype=int64, numpy=
array([[[260, 360],
  [320, 445]]])>

例子2:

x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
dotted = tf.keras.layers.Dot(axes=1)([x1, x2])
dotted.shape
TensorShape([5, 1])

(3)联合:

# 所有输入张量通过 axis 轴串联起来的输出张量。
layers.add(inputs,axis=-1)
  • inputs: 一个列表的输入张量(列表大小至少为 2)。
  • axis: 串联的轴。

例子:

x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
concatted = tf.keras.layers.Concatenate()([x1, x2])
concatted.shape
TensorShape([5, 16])

(4)统计操作

求均值layers.Average()

input1 = tf.keras.layers.Input(shape=(16,))
x1 = tf.keras.layers.Dense(8, activation='relu')(input1)
input2 = tf.keras.layers.Input(shape=(32,))
x2 = tf.keras.layers.Dense(8, activation='relu')(input2)
avg = tf.keras.layers.Average()([x1, x2])
# x_1 x_2 的均值作为输出
print(avg)
# <tf.Tensor 'average/Identity:0' shape=(None, 8) dtype=float32>

out = tf.keras.layers.Dense(4)(avg)
model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)

layers.Maximum()用法相同。

具有多个输入和输出的模型

假设要构造这样一个模型:

(1)模型具有以下三个输入

工单标题(文本输入),工单的文本正文(文本输入),以及用户添加的任何标签(分类输入)

(2)模型将具有两个输出:

  • 介于 0 和 1 之间的优先级分数(标量 Sigmoid 输出)
  • 应该处理工单的部门(部门范围内的 Softmax 输出)。

模型大概长这样:

在这里插入图片描述

接下来开始创建这个模型。

(1)模型的输入

num_tags = 12
num_words = 10000
num_departments = 4

title_input = keras.Input(shape=(None,), name="title") # Variable-length sequence of ints
body_input = keras.Input(shape=(None,), name="body") # Variable-length sequence of ints
tags_input = keras.Input(shape=(num_tags,), name="tags") # Binary vectors of size `num_tags`

(2)将输入的每一个词进行嵌入成64-dimensional vector

title_features = layers.Embedding(num_words,64)(title_input)
body_features = layers.Embedding(num_words,64)(body_input)

(3)处理结果输入LSTM模型,得到 128-dimensional vector

title_features = layers.LSTM(128)(title_features)
body_features = layers.LSTM(32)(body_features)

(4)concatenate融合所有的特征

x = layers.concatenate([title_features, body_features, tags_input])

(5)模型的输出

# 输出1,回归问题
priority_pred = layers.Dense(1,name="priority")(x)

# 输出2,分类问题
department_pred = layers.Dense(num_departments,name="department")(x)

(6)定义模型

model = keras.Model(
 inputs=[title_input, body_input, tags_input],
 outputs=[priority_pred, department_pred],
)

(7)模型编译

编译此模型时,可以为每个输出分配不同的损失。甚至可以为每个损失分配不同的权重,以调整其对总训练损失的贡献。

model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss={
  "priority": keras.losses.BinaryCrossentropy(from_logits=True),
  "department": keras.losses.CategoricalCrossentropy(from_logits=True),
 },
 loss_weights=[1.0, 0.2],
)

(8)模型的训练

# Dummy input data
title_data = np.random.randint(num_words, size=(1280, 10))
body_data = np.random.randint(num_words, size=(1280, 100))
tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32")

# Dummy target data
priority_targets = np.random.random(size=(1280, 1))
dept_targets = np.random.randint(2, size=(1280, num_departments))

# 通过字典的形式将数据fit到模型
model.fit(
 {"title": title_data, "body": body_data, "tags": tags_data},
 {"priority": priority_targets, "department": dept_targets},
 epochs=2,
 batch_size=32,
)

ResNet 模型

通过add来实现融合操作,模型的基本结构如下:

# 实现第一个块
_input = keras.Input(shape=(32,32,3))
x = layers.Conv2D(32,3,activation='relu')(_input)
x = layers.Conv2D(64,3,activation='relu')(x)
block1_output = layers.MaxPooling2D(3)(x)

# 实现第二个块
x = layers.Conv2D(64,3,padding='same',activation='relu')(block1_output)
x = layers.Conv2D(64,3,padding='same',activation='relu')(x)
block2_output = layers.add([x,block1_output])


# 实现第三个块
x = layers.Conv2D(64, 3, activation="relu", padding="same")(block2_output)
x = layers.Conv2D(64, 3, activation="relu", padding="same")(x)
block_3_output = layers.add([x, block2_output])

# 进入全连接层
x = layers.Conv2D(64,3,activation='relu')(block_3_output)
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(256, activation="relu")(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(10)(x)

在这里插入图片描述

模型的定义与编译:

model = keras.Model(_input,outputs,name='resnet')

model.compile(
 optimizer=keras.optimizers.RMSprop(1e-3),
 loss='sparse_categorical_crossentropy',
 metrics=["acc"],
)

模型的训练

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 归一化
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
model.fit(tf.expand_dims(x_train,-1), y_train, batch_size=64, epochs=1, validation_split=0.2)

注:当loss = =keras.losses.CategoricalCrossentropy(from_logits=True)时,需对标签进行one-hot:

y_train = keras.utils.to_categorical(y_train, 10)

到此这篇关于tensorflow2.0实现复杂神经网络(多输入多输出nn,Resnet)的文章就介绍到这了,更多相关tensorflow2.0复杂神经网络内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程