音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

python 基于空间相似度的K-means轨迹聚类的实现
日期:2021-09-08 13:50:53   来源:脚本之家

这里分享一些轨迹聚类的基本方法,涉及轨迹距离的定义、kmeans聚类应用。
需要使用的python库如下

import pandas as pd
import numpy as np
import random
import os
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import cdist
from itertools import combinations
from joblib import Parallel, delayed
from tqdm import tqdm

数据读取

假设数据是每一条轨迹一个excel文件,包括经纬度、速度、方向的航班数据。我们从文件中读取该数据,保存在字典中。
获取数据的地址,假设在多个文件中

def get_alldata_path(path):
  all_path = pd.DataFrame(columns=['path_root','path0','path1','path2','path','datalist'])
  path0 = os.listdir(path)
  for path_temp0 in path0:
    path1 = os.listdir(path+path_temp0)
    for path_temp1 in path1:
      path2 = os.listdir(path+path_temp0+'\\'+path_temp1)
      for path_temp2 in path2:
        path3 = os.listdir(path+path_temp0+'\\'+path_temp1+'\\'+path_temp2)
        all_path.loc[all_path.shape[0]] = [path,path_temp0,path_temp1,path_temp2,
                            path+path_temp0+'\\'+path_temp1+'\\'+path_temp2+'\\',
                            path3]
  return all_path

这样你就可以得到你的数据的地址,方便后面读取需要的数据

#设置数据根目录
path = 'yourpath'
#获取所有数据地址
data_path = get_alldata_path(path)

读取数据,保存成字典格式,字典的key是这条轨迹的名称,value值是一个DataFrame,需要包含经纬度信息。

def read_data(data_path,idxs):
   '''
   功能:读取数据
   '''
   data = {}
   for idx in idxs:
     path_idx = data_path['path'][idx]
     for dataname in data_path['datalist'][idx]:
       temp = pd.read_excel(path_idx+dataname,header=None)
       temp = temp.loc[:,[4,5,6,8]]
       temp.replace('none',np.nan,inplace=True)
       temp.replace('Trak',np.nan,inplace=True)
       temp = temp.dropna().astype(float)
       temp.columns = ['GPSLongitude','GPSLatitude','direction','speed']
       data[str(idx)+'_'+dataname] = temp
   return data

读取你想要的数据,前面读取到的地址也是一个DataFrame,选择你想要进行聚类的数据读取进来。

#读取你想要的数据
idxs = [0,1,2]
data = read_data(data_path,idxs)

定义不同轨迹间的距离

这里使用了双向的Hausdorff距离(双向豪斯多夫距离)
给定两条轨迹A和B,其中轨迹A上有n个点,轨迹B上有m个点。它们之间的空间相似距离d定义为:

在这里插入图片描述

其中,di ,j 是一条轨迹上的第 i个点到另一条轨迹上的 第 j 个 点之间的多因素欧氏距离。可见, 如果轨迹 A 和 B 越相似, 它们之间的距离就越小, 反之则越大。

def OneWayHausdorffDistance(ptSetA, ptSetB):
  # 计算任意向量之间的距离,假设ptSetA有n个向量,ptSetB有m个向量
  # 得到矩阵C(n行m列)Cij代表A中都第i个向量到B中第j向量都距离
  dist = cdist(ptSetA, ptSetB, metric='euclidean')
  # np.min(dist,axis=1):计算每一行的的最小值
  # 即:固定点集A的值,求点集A中到集合B的最小值
  return np.max(np.min(dist, axis=1))
	# 计算双向的Hausdorff距离=====>H(ptSetA,ptSetB)=max(h(ptSetA,ptSetB),h(ptSetB,ptSetA))
	# ptSetA:输入的第一个点集
	# ptSetB:输入的第二个点集
	# Hausdorff距离度量了两个点集间的最大不匹配程度
def HausdorffDistance(ptSetA, ptSetB):
  # 计算双向的Hausdorff距离距离
  
  res = np.array([
    OneWayHausdorffDistance(ptSetA, ptSetB),
    OneWayHausdorffDistance(ptSetB, ptSetA)
  ])
  return np.max(res) 

计算距离矩阵

每个轨迹数据都包含经纬度、速度、方向,分别计算距离,然后根据一定的比例相加,活动最终的距离。

def DistanceMat(data,w=[0.7,0.2,0.1]):
   '''
   功能:计算轨迹段的距离矩阵
   输出:距离矩阵
   '''
   #要计算的组合
   ptCom = list(combinations(list(data.keys()),2))
   #基于轨迹的距离
   distance_tra = Parallel(n_jobs=8,verbose=False)(delayed(HausdorffDistance)(
          data[ptSet1][['GPSLongitude','GPSLatitude']],data[ptSet2][['GPSLongitude','GPSLatitude']]
          ) for ptSet1,ptSet2 in ptCom)
   distancemat_tra = pd.DataFrame(ptCom)
   distancemat_tra['distance'] = distance_tra 
   distancemat_tra = distancemat_tra.pivot(index=0,columns=1,values='distance')
   for pt1 in data.keys():
     distancemat_tra.loc[str(pt1),str(pt1)] = 0
   distancemat_tra = distancemat_tra.fillna(0)
   distancemat_tra = distancemat_tra.loc[list(data.keys()),list(data.keys())]
   distancemat_tra = distancemat_tra+distancemat_tra.T
   
   #基于方向的距离
   distance_speed = Parallel(n_jobs=8,verbose=False)(delayed(HausdorffDistance)(
          data[ptSet1][['speed']],data[ptSet2][['speed']]
          ) for ptSet1,ptSet2 in ptCom)
   distancemat_speed = pd.DataFrame(ptCom)
   distancemat_speed['distance'] = distance_speed 
   distancemat_speed = distancemat_speed.pivot(index=0,columns=1,values='distance')
   for pt1 in data.keys():
     distancemat_speed.loc[str(pt1),str(pt1)] = 0
   distancemat_speed = distancemat_speed.fillna(0)
   distancemat_speed = distancemat_speed.loc[list(data.keys()),list(data.keys())]
   distancemat_speed = distancemat_speed+distancemat_speed.T
   #基于方向的距离
   distance_direction = Parallel(n_jobs=8,verbose=False)(delayed(HausdorffDistance)(
          data[ptSet1][['direction']],data[ptSet2][['direction']]
          ) for ptSet1,ptSet2 in ptCom)
   distancemat_direction = pd.DataFrame(ptCom)
   distancemat_direction['distance'] = distance_direction 
   distancemat_direction = distancemat_direction.pivot(index=0,columns=1,values='distance')
   for pt1 in data.keys():
     distancemat_direction.loc[str(pt1),str(pt1)] = 0
   distancemat_direction = distancemat_direction.fillna(0)
   distancemat_direction = distancemat_direction.loc[list(data.keys()),list(data.keys())]
   distancemat_direction = distancemat_direction+distancemat_direction.T
   distancemat_tra = (distancemat_tra-distancemat_tra.min().min())/(distancemat_tra.max().max()-distancemat_tra.min().min())
   distancemat_speed = (distancemat_speed-distancemat_speed.min().min())/(distancemat_speed.max().max()-distancemat_speed.min().min())
   distancemat_direction = (distancemat_direction-distancemat_direction.min().min())/(distancemat_direction.max().max()-distancemat_direction.min().min())
   distancemat = w[0]*distancemat_tra+w[1]*distancemat_speed+w[2]*distancemat_direction 
   return distancemat

使用前面读取的数据,计算不同轨迹间的距离矩阵,缺点在于计算时间会随着轨迹数的增大而指数增长。

distancemat = DistanceMat(data,w=[0.7,0.2,0.1])

k-means聚类

获得了不同轨迹间的距离矩阵后,就可以进行聚类了。这里选择k-means,为了得到更好的结果,聚类前的聚类中心选取也经过了一些设计,排除了随机选择,而是选择尽可能远的轨迹点作为 初始中心。
初始化聚类“中心”。随机选取一条轨迹作为第一类的中心, 即选取一个轨迹序列作为聚类的初始“中心。然后在剩下的 L - 1 个序列中选取一个序列 X 2 作为第二类的中心 C 2 , 设定一个阈值 q, 使其到第一类的中心 C 1 的距离大于q。

class KMeans:
  def __init__(self,n_clusters=5,Q=74018,max_iter=150):
     self.n_clusters = n_clusters #聚类数
     self.Q = Q
     self.max_iter = max_iter  # 最大迭代数
     
  def fit(self,distancemat):
     #选择初始中心
     best_c = random.sample(distancemat.columns.tolist(),1)  
     for i in range(self.n_clusters-1):
       best_c += random.sample(distancemat.loc[(distancemat[best_c[-1]]>self.Q)&(~distancemat.index.isin(best_c))].index.tolist(),1) 
     center_init = distancemat[best_c] #选择最小的样本组合为初始质心
     self._init_center = center_init
     #迭代停止条件
     iter_ = 0
     run = True
     #开始迭代
     while (iter_<self.max_iter)&(run==True):
       #聚类聚类标签更新
       labels_ = np.argmin(center_init.values,axis=1)
       #聚类中心更新
       best_c_ = [distancemat.iloc[labels_== i,labels_==i].sum().idxmin() for i in range(self.n_clusters)]
       center_init_ = distancemat[best_c_]
       #停止条件
       iter_ += 1
       if best_c_ == best_c:
          run = False
       center_init = center_init_.copy()
       best_c = best_c_.copy()
     #记录数据
     self.labels_ = np.argmin(center_init.values,axis=1)
     self.center_tra = center_init.columns.values
     self.num_iter = iter_
     self.sse = sum([sum(center_init.iloc[self.labels_==i,i]) for i in range(self.n_clusters)])

应用聚类,根据平方误差和SSE结合手肘法确定最佳的聚类数,使用最佳的聚类数获得最后聚类模型。

 #聚类,保存不同的sse
SSE = []
for i in range(2,30):
 kmeans = KMeans(n_clusters=i,Q=0.01,max_iter=150)
 kmeans.fit(distancemat)
 SSE.append(kmeans.sse)
#画图
plt.figure(0)
plt.plot(SSE)
plt.show()

#使用最好的结果进行聚类
n_clusters=12
kmeans = KMeans(n_clusters=n_clusters,Q=0.01,max_iter=150)
kmeans.fit(distancemat)
kmeans.sse #输出sse
kmeans.labels_ #输出标签
kmeans.center_tra #输出聚类中心

#画图,不同类的轨迹使用不同的颜色
plt.figure(1)
for i in range(n_clusters):
  for name in distancemat.columns[kmeans.labels_==i]:
    plt.plot(data[name].loc[:,'GPSLongitude'],data[name].loc[:,'GPSLatitude'],c=sns.xkcd_rgb[list(sns.xkcd_rgb.keys())[i]])
plt.show()

#保存每一个轨迹属于哪一类
kmeans_result = pd.DataFrame(columns=['label','id'])
for i in range(n_clusters):
  kmeans_result.loc[i] = [i,distancemat.columns[kmeans.labels_==i].tolist()]

到此这篇关于python 基于空间相似度的K-means轨迹聚类的实现的文章就介绍到这了,更多相关python K-means轨迹聚类内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程