音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

pytorch 实现冻结部分参数训练另一部分
日期:2021-09-08 13:54:55   来源:脚本之家

1)添加下面一句话到模型中

for p in self.parameters():
 p.requires_grad = False

比如加载了resnet预训练模型之后,在resenet的基础上连接了新的模快,resenet模块那部分可以先暂时冻结不更新,只更新其他部分的参数,那么可以在下面加入上面那句话

class RESNET_MF(nn.Module):
 def __init__(self, model, pretrained):
  super(RESNET_MF, self).__init__()
  self.resnet = model(pretrained)
  for p in self.parameters():
   p.requires_grad = False #预训练模型加载进来后全部设置为不更新参数,然后再后面加层
  self.f = SpectralNorm(nn.Conv2d(2048, 512, 1))
  self.g = SpectralNorm(nn.Conv2d(2048, 512, 1))
  self.h = SpectralNorm(nn.Conv2d(2048, 2048, 1))
  ...

同时在优化器中添加:

filter(lambda p: p.requires_grad, model.parameters())
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001, \
 betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-5)

2) 参数保存在有序的字典中,那么可以通过查找参数的名字对应的id值,进行冻结

查看每一层的代码:

model_dict = torch.load('net.pth.tar').state_dict()
dict_name = list(model_dict)
for i, p in enumerate(dict_name):
 print(i, p)

打印一下这个文件,可以看到大致是这个样子的:

0 gamma
1 resnet.conv1.weight
2 resnet.bn1.weight
3 resnet.bn1.bias
4 resnet.bn1.running_mean
5 resnet.bn1.running_var
6 resnet.layer1.0.conv1.weight
7 resnet.layer1.0.bn1.weight
8 resnet.layer1.0.bn1.bias
9 resnet.layer1.0.bn1.running_mean
....

同样在模型中添加这样的代码:

for i,p in enumerate(net.parameters()):
 if i < 165:
  p.requires_grad = False

在优化器中添加上面的那句话可以实现参数的屏蔽

补充:pytorch 加载预训练模型 + 断点恢复 + 冻结训练(避坑版本)

1、 预训练模型网络结构 = 你要加载模型的网络结构

那么直接 套用

path="你的 .pt文件路径"
model = "你的网络"
checkpoint = torch.load(path, map_location=device)
model.load_state_dict(checkpoint)

2、 预训练模型网络结构 与你的网络结构不一致

当你直接套用上面公式,会出现类似unexpected key module.xxx.weight问题

这种情况下,需要具体分析一下网络信息,再决定如何加载。

# model_dict 是一个字典,保存网络 各层名称和参数,
model_dict = model.state_dict()
print(model_dict.keys()
# 这里打印出 网络 各层名称
checkpoint = torch.load(path,map_location=device)
for k, v in checkpoint.items():
 print("keys:".k)
# 这里打印出 预训练模型网络 各层名称, 是字典 【键】显示的另一种方式。

然后,对比两者网络结构参数 的异同,

若各层网络名称 基本不一致,那这个预训练模型基本就没法用了,直接换模型吧

若两者网络参数有很多 类似的地方,但又不完全一致,那可以采取如下方式。

(1) 部分网络关键字 ---- 完全匹配的情况

model.load_state_dict(checkpoint, strict=True)

load_state_dict 函数添加 参数 strict=True, 它直接忽略那些没有的dict,有相同的就复制,没有就直接放弃赋值!他要求预训练模型的关键字必须确切地严格地和 网络的 state_dict() 函数返回的关键字相匹配才能赋值。

strict 也不是很智能,适用于那些 网络关键字 基本能够匹配的情况。否则即使加载成功,网络参数也是空的。

(2)大部分网络关键字 ---- 部分匹配 (不完全相同,但类似),例如

网络关键字: backbone.stage0.rbr_dense.conv.weight

预训练模型 关键字:stage0.rbr_dense.conv.weight

可以看到,网络关键字 比预训练模型 多了一个前缀,其它完全一致,这种情况下,可以把 预训练模型的 stage0.rbr_dense.conv.weight 读入 网络的 backbone.stage0.rbr_dense.conv.weight 中。

# 对于 字典而言,in 或 not in 运算符都是基于 key 来判断的
model_dict = model.state_dict()
checkpoint = torch.load(path,map_location=device)
# k 是预训练模型的一个关键字, ss是 网络的有一个关键字
for k, v in checkpoint.items():
 flag = False
 for ss in model_dict.keys():
 if k in ss: # 在每一个元素内部匹配
 s = ss; flag = True; break
 else:
 continue
 if flag:
 checkpoint[k] = model_dict[s]

3、断点恢复

我感觉这个和常规【模型保存加载】方法的区别主要是 epoch的恢复

# 模型保存
state = {
 'epoch': epoch,
 'state_dict': model.state_dict(),
 'optimizer': optimizer.state_dict(),
  ... # 有其他希望保存的内容,也可自定义
 }
 torch.save(state, filepath)
# 加载模型,恢复训练
 model.load_state_dict(state['state_dict'])
 optimizer.load_state_dict(state['optimizer'])
 start_epoch = checkpoint['epoch'] + 1

4、冻结训练

一般冻结训练都是针对【backbone】来说的,较多应用于【迁移学习】

例如,0-49 Epoch:冻结 backbone进行训练;50-99:不冻结训练。

Init_Epoch = 0
Freeze_Epoch = 50
Unfreeze_Epoch =100
#------------------------------------#
# 冻结一定部分训练
#------------------------------------# 
for param in model.backbone.parameters():
 param.requires_grad = False
for epoch in range(Init_Epoch,Freeze_Epoch): 
 # I`m Freeze-training !!
 pass
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.backbone.parameters():
 param.requires_grad = True
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
 # I`m unfreeze-training !!
 pass 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程