音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

如何用python做逐步回归
日期:2021-09-08 13:58:44   来源:脚本之家

算法介绍

逐步回归是一种线性回归模型自变量选择方法;
逐步回归的基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含显著性变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。
这里我们选择赤池信息量(Akaike Information Criterion)来作为自变量选择的准则,赤池信息量(AIC)达到最小:基于最大似然估计原理的模型选择准则。

数据情况

案例

在现实生活中,影响一个地区居民消费的因素有很多,例如一个地区的人均生产总值、收入水平等等,本案例选取了9个解释变量研究城镇居民家庭平均每人全年的消费新支出y,解释变量为:
x1——居民的食品花费
x2——居民的衣着消费
x3——居民的居住花费
x4——居民的医疗保健花费
x5——居民的文教娱乐花费
x6——地区的职工平均工资
x7——地区的人均GDP
x8——地区的消费价格指数
x9——地区的失业率(%)

数据

代码

# -*- coding: UTF-8 -*-

import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.api import anova_lm
import matplotlib.pyplot as plt
import pandas as pd
from patsy import dmatrices
import itertools as it
import random


# Load data 读取数据
df = pd.read_csv('data3.1.csv',encoding='gbk')
print(df)


target = 'y'
variate = set(df.columns) #获取列名
variate.remove(target) #去除无关列
variate.remove('地区')

#定义多个数组,用来分别用来添加变量,删除变量
x = []
variate_add = []
variate_del = variate.copy()
# print(variate_del)
y = random.sample(variate,3) #随机生成一个选模型,3为变量的个数
print(y)
#将随机生成的三个变量分别输入到 添加变量和删除变量的数组
for i in y:
 variate_add.append(i)
 x.append(i)
 variate_del.remove(i)

global aic #设置全局变量 这里选择AIC值作为指标
formula="{}~{}".format("y","+".join(variate_add)) #将自变量名连接起来
aic=smf.ols(formula=formula,data=df).fit().aic #获取随机函数的AIC值,与后面的进行对比
print("随机化选模型为:{}~{},对应的AIC值为:{}".format("y","+".join(variate_add), aic))
print("\n")



#添加变量
def forwark():
 score_add = []
 global best_add_score
 global best_add_c
 print("添加变量")
 for c in variate_del:
  formula = "{}~{}".format("y", "+".join(variate_add+[c]))
  score = smf.ols(formula = formula, data = df).fit().aic
  score_add.append((score, c)) #将添加的变量,以及新的AIC值一起存储在数组中
  
  print('自变量为{},对应的AIC值为:{}'.format("+".join(variate_add+[c]), score))

 score_add.sort(reverse=True) #对数组内的数据进行排序,选择出AIC值最小的
 best_add_score, best_add_c = score_add.pop()
 
 print("最小AIC值为:{}".format(best_add_score))
 print("\n")

#删除变量
def back():
 score_del = []
 global best_del_score
 global best_del_c
 print("剔除变量")
 for i in x:

  select = x.copy() #copy一个集合,避免重复修改到原集合
  select.remove(i)
  formula = "{}~{}".format("y","+".join(select))
  score = smf.ols(formula = formula, data = df).fit().aic
  print('自变量为{},对应的AIC值为:{}'.format("+".join(select), score))
  score_del.append((score, i))

 score_del.sort(reverse=True) #排序,方便将最小值输出
 best_del_score, best_del_c = score_del.pop() #将最小的AIC值以及对应剔除的变量分别赋值
 print("最小AIC值为:{}".format(best_del_score))
 print("\n")

print("剩余变量为:{}".format(variate_del))
forwark()
back()

while variate:
  
#  forwark()
#  back()
 if(aic < best_add_score < best_del_score or aic < best_del_score < best_add_score):
  print("当前回归方程为最优回归方程,为{}~{},AIC值为:{}".format("y","+".join(variate_add), aic))
  break
 elif(best_add_score < best_del_score < aic or best_add_score < aic < best_del_score):
  print("目前最小的aic值为{}".format(best_add_score))
  print('选择自变量:{}'.format("+".join(variate_add + [best_add_c]))) 
  print('\n')
  variate_del.remove(best_add_c)
  variate_add.append(best_add_c)
  print("剩余变量为:{}".format(variate_del))
  aic = best_add_score
  forwark()
 else:
  print('当前最小AIC值为:{}'.format(best_del_score))
  print('需要剔除的变量为:{}'.format(best_del_c))
  aic = best_del_score #将AIC值较小的选模型AIC值赋给aic再接着下一轮的对比
  x.remove(best_del_c) #在原集合上剔除选模型所对应剔除的变量
  back()
  

结果

以上就是如何用python 做逐步回归的详细内容,更多关于python 逐步回归的资料请关注其它相关文章!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程