音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

浅谈Pandas dataframe数据处理方法的速度比较
日期:2021-09-08 13:59:31   来源:脚本之家

数据修改主要以增删改差为主,这里比较几种写法在数据处理时间上的巨大差别。

数据量大概是500万行级别的数据,文件大小为100M。

1.iloc

iloc是一种速度极其慢的写法。这里我们对每个csv文件中的每一行循环再用iloc处理,示例代码如下:

for index in range(len(df)):
   df.iloc['attr'][index] = xxx

使用这种方法对五百万行的数据进行处理大概需要5个小时,实在是很慢。

2.at

at相比于iloc有了很大的性能提升,也是for循环处理,示例代码如下:

for i in range(len(df)):
  if df.at[i,'attr'] > 0:
    sum_positive += df.at[i,'attr']
  else:
    sum_negetive += df.at[i,'sttr']

在我的程序里at和iloc是可以通用的,用at,程序的速度会有大幅提高,大概10分钟,但是还不够。

3.apply(lambda x:...)

想说apply是因为我觉得for循环速度太慢,想在循环上对程序进行优化。然后网上有人说apply可以大幅度提升速度,然而经过测试发现在我的程序里,使用apply和for差不多吧,性能也一般。

4.直接用series处理

这才是真正优化for循环的方法,以上面at的程序为例,可以改写为:

sum_positive += df['attr'][df.attr > 0].sum()
sum_negative += df['attr'][df.attr < 0].sum()

将程序都改为series处理,快了很多,最后500万行的数据大概需要37秒能跑完,基本符合预期。

这里提两句关于dataframe属性筛选,也就是上面df.attr > 0这一部分。首先pandas这个属性筛选实在是很强大,很方便。

其次是我们属性筛选的时候不要去修改属性,而是修改后面的数字,比如,我们不要这样写:

float(df.attr )> 0,而是这样写:

df.attr > str(0),因为df.attr作为属性是不能随便动的。

补充:pandas中DataFrame单个数据提取效率与修改效率

目标

使用pandas处理金融数据及建模中经常需要按时间序列顺序循DataFrame数据,读取具体位置的数据判断或修改。经验上这种操作要比直接对二维列表或者np.array格式数据慢的多,原因可能在于index及columns层次的查找(两个字典,都不是连续数组,每次查找定位都需要时间)和DataFrame中数据的内存布局,有机会以后再深入研究。

这里做一组数值实验对比几种方法的效率。

生成数据

先生成一个二维数组随机数作为DataFrame数据,不失一般性,并把列名、行名设为标记顺序的字符串。

import numpy as np
import pandas as pd

from copy import deepcopy
from time import time

np.random.seed(20000)
I = 900
df = pd.DataFrame(np.random.standard_normal((I, I)),
   columns=['c'+str(_) for _ in range(I)],
         index=['i'+str(_) for _ in range(I)])

然后从限定范围内随机生成取值位置,为了方便对比,把随机坐标与字符串名对应起来

columns_num = np.floor(np.random.uniform(0, 1, I) * I).astype(int)
index_num = np.floor(np.random.uniform(0, 1, I) * I).astype(int)

columns_str = ['c'+str(_) for _ in columns_num]
index_str = ['i'+str(_) for _ in index_num]

读取测试

首先传统方法,直接取columns及index中名称定位

t0 = time()
for m in columns_str:
  for n in index_str:
    c = df[m][n]
print(time()-t0)

6.789840459823608

先columns列名后在values中取行坐标,速度快了一些

t0 = time()
for m in columns_str:
  for n in index_num:
    c = df[m].values[n]
print(time()-t0)

1.9697318077087402

loc方法,速度和直接取columns及index中名称定位差不多

t0 = time()
for m in columns_str:
  for n in index_str:
    c = df.loc[n, m]
print(time()-t0)

5.661889314651489

at方法,比loc快一点,毕竟loc可以切片的

t0 = time()
for m in columns_str:
  for n in index_str:
    c = df.at[m, n]
print(time()-t0)

3.3770089149475098

假设知道具体横纵坐标后,我们再比较:

还是从取values开始,也很慢,看来每次从df中取values很耗时

t0 = time()
for m in columns_num:
  for n in index_num:
    c = df.values[n][m]
print(time()-t0)

6.041872024536133

iloc试一下,没什么区别

t0 = time()
for m in columns_num:
  for n in index_num:
    c = df.iloc[n, m]
print(time()-t0)

6.103677034378052

iat做对比,提升不大,有点失望

t0 = time()
for m in columns_num:
  for n in index_num:
    c = df.iat[n, m]
print(time()-t0)

4.375299692153931

最后最高效的方法,还是先取二维数组来再定位

t0 = time()
b = df.values
for m in columns_num:
  for n in index_num:
    c = b[n][m]
print(time()-t0)

0.6402544975280762

修改测试

重复刚才的过程,把对应值改为0作为简单测试方式,别忘了原始数据要备份

取columns及index中名称定位

df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_str:
    df_backup[m][n] = 0.0
print(time()-t0)

41.99269938468933

先columns列名后在values中取行坐标

df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_num:
    df_backup[m].values[n] = 0.0
print(time()-t0)

2.215076208114624

loc方法

df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_str:
    df_backup.loc[n, m] = 0.0
print(time()-t0)

134.39290761947632

at方法,在修改数值上竟然比loc快这么多

df_backup = deepcopy(df)
t0 = time()
for m in columns_str:
  for n in index_str:
    df_backup.at[n, m] = 0.0
print(time()-t0)

4.7453413009643555

在values上改,也是不错的,和读取相近,看来还都是在每次提取values上耗时

df_backup = deepcopy(df)
t0 = time()
for m in columns_num:
  for n in index_num:
    df.values[n][m] = 0.0
print(time()-t0)

6.346027612686157

iloc方法

df_backup = deepcopy(df)
t0 = time()
for m in columns_num:
  for n in index_num:
    df.iloc[n, m] = 0.0
print(time()-t0)

122.33384037017822

iat方法

df_backup = deepcopy(df)
t0 = time()
for m in columns_num:
  for n in index_num:
    df.iat[n, m] = 0.0
print(time()-t0)

5.381632328033447

取二维数组来再定位

df_backup = deepcopy(df)
t0 = time()
b = df.values
for m in columns_num:
  for n in index_num:
    c = b[n][m]
print(time()-t0)

0.4298992156982422

总结

效率上肯定是直接取数值最优的,这次系统性比较做个记录。代码写的有点啰嗦了,不过方便复制实验。在建模级别的代码上我还是习惯于用第2种方法,主要是鉴于代码可读性、维护和修改上。代码会在key上告诉我这里是什么,直观易读。

以前也曾为了提高代码运行效率写过先提取二维数组的,但columns多了就很费劲,重读还需要转译一遍。当然也可以把数据写成类,但是感觉和pandas不好融合,从建模和研究效率上没有太好的解决方案。之后会找时间再研究DataFrame内部机制。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程