音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

pytorch实现线性回归以及多元回归
日期:2021-09-08 14:02:08   来源:脚本之家

本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下

最近在学习pytorch,现在把学习的代码放在这里,下面是github链接

直接附上github代码

# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是Variable
 
x_train = np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],[9.779],[6.182],[7.59],[2.167],[7.042],[10.791],[5.313],[7.997],[3.1]],dtype=np.float32)
y_train = np.array([[1.7],[2.76],[2.09],[3.19],[1.694],[1.573],[3.366],[2.596],[2.53],[1.221],[2.827],[3.465],[1.65],[2.904],[1.3]],dtype=np.float32)
 
# 首先我们需要将array转化成tensor,因为pytorch处理的单元是Tensor
 
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)
 
 
# def a simple network
 
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression,self).__init__()
        self.linear = nn.Linear(1, 1)  # input and output is 2_dimension
    def forward(self, x):
        out = self.linear(x)
        return out
 
 
if torch.cuda.is_available():
    model = LinearRegression().cuda()
    #model = model.cuda()
else:
    model = LinearRegression()
    #model = model.cuda()
 
# 定义loss function 和 optimize func
criterion = nn.MSELoss()   # 均方误差作为优化函数
optimizer = torch.optim.SGD(model.parameters(),lr=1e-3)
num_epochs = 30000
for epoch in range(num_epochs):
    if torch.cuda.is_available():
        inputs = Variable(x_train).cuda()
        outputs = Variable(y_train).cuda()
    else:
        inputs = Variable(x_train)
        outputs = Variable(y_train)
 
    # forward
    out = model(inputs)
    loss = criterion(out,outputs)
 
    # backword
    optimizer.zero_grad()  # 每次做反向传播之前都要进行归零梯度。不然梯度会累加在一起,造成不收敛的结果
    loss.backward()
    optimizer.step()
 
    if (epoch +1)%20==0:
        print('Epoch[{}/{}], loss: {:.6f}'.format(epoch+1,num_epochs,loss.data))
 
 
model.eval()  # 将模型变成测试模式
predict = model(Variable(x_train).cuda())
predict = predict.data.cpu().numpy()
plt.plot(x_train.numpy(),y_train.numpy(),'ro',label = 'original data')
plt.plot(x_train.numpy(),predict,label = 'Fitting line')
plt.show()

结果如图所示:

多元回归:

# _*_encoding=utf-8_*_
# pytorch 里面最基本的操作对象是Tensor,pytorch 的tensor可以和numpy的ndarray相互转化。
# 实现一个线性回归
# 所有的层结构和损失函数都来自于 torch.nn
# torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是Variable
 
 
# 实现 y = b + w1 *x + w2 *x**2 +w3*x**3
import os
os.environ['CUDA_DEVICE_ORDER']="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES']='0'
import torch
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt
from torch import nn
 
 
# pre_processing
def make_feature(x):
    x = x.unsqueeze(1)   # unsquenze 是为了添加维度1的,0表示第一维度,1表示第二维度,将tensor大小由3变为(3,1)
    return torch.cat([x ** i for i in range(1, 4)], 1)
 
# 定义好真实的数据
 
 
def f(x):
    W_output = torch.Tensor([0.5, 3, 2.4]).unsqueeze(1)
    b_output = torch.Tensor([0.9])
    return x.mm(W_output)+b_output[0]  # 外积,矩阵乘法
 
 
# 批量处理数据
def get_batch(batch_size =32):
 
    random = torch.randn(batch_size)
    x = make_feature(random)
    y = f(x)
    if torch.cuda.is_available():
 
        return Variable(x).cuda(),Variable(y).cuda()
    else:
        return Variable(x),Variable(y)
 
 
 
# def model
class poly_model(nn.Module):
    def __init__(self):
        super(poly_model,self).__init__()
        self.poly = nn.Linear(3,1)
    def forward(self,input):
        output = self.poly(input)
        return output
 
if torch.cuda.is_available():
    print("sdf")
    model = poly_model().cuda()
else:
    model = poly_model()
 
 
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
 
epoch = 0
while True:
    batch_x, batch_y = get_batch()
    #print(batch_x)
    output = model(batch_x)
    loss = criterion(output,batch_y)
    print_loss = loss.data
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    epoch = epoch +1
    if print_loss < 1e-3:
        print(print_loss)
        break
 
model.eval()
print("Epoch = {}".format(epoch))
 
batch_x, batch_y = get_batch()
predict = model(batch_x)
a = predict - batch_y
y = torch.sum(a)
print('y = ',y)
predict = predict.data.cpu().numpy()
plt.plot(batch_x.cpu().numpy(),batch_y.cpu().numpy(),'ro',label = 'Original data')
plt.plot(batch_x.cpu().numpy(),predict,'b', ls='--',label = 'Fitting line')
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程