音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

深度学习tensorflow基础mnist
日期:2021-09-08 14:04:26   来源:脚本之家

软件架构

mnist数据集的识别使用了两个非常小的网络来实现,第一个是最简单的全连接网络,第二个是卷积网络,mnist数据集是入门数据集,所以不需要进行图像增强,或者用生成器读入内存,直接使用简单的fit()命令就可以一次性训练

安装教程

  1. 使用到的主要第三方库有tensorflow1.x,基于TensorFlow的Keras,基础的库包括numpy,matplotlib
  2. 安装方式也很简答,例如:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
  3. 注意tensorflow版本不能是2.x

使用说明

  1. 首先,我们预览数据集,运行mnistplt.py,绘制了4张训练用到的图像
  2. 训练全连接网络则运行Densemnist.py,得到权重Dense.h5,加载模型并预测运行Denseload.py
  3. 训练卷积网络则运行CNNmnist.py,得到权重CNN.h5,加载模型并预测运行CNNload.py

结果图

在这里插入图片描述

在这里插入图片描述

训练过程注释

全连接网络训练:

"""多层感知机训练"""
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import  Sequential
from keras.layers import Dense
#模拟原始灰度数据读入
img_size=28
num=10
mnist=input_data.read_data_sets("./data",one_hot=True)
X_train,y_train,X_test,y_test=mnist.train.images,mnist.train.labels,mnist.test.images,mnist.test.labels
X_train=X_train.reshape(-1,img_size,img_size)
X_test=X_test.reshape(-1,img_size,img_size)
X_train=X_train*255
X_test=X_test*255
y_train=y_train.reshape(-1,num)
y_test=y_test.reshape(-1,num)
print(X_train.shape)
print(y_train.shape)
#全连接层只能输入一维
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0],num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0],num_pixels).astype('float32')
#归一化
X_train=X_train/255
X_test=X_test/255
# one hot编码,这里编好了,省略
#y_train = np_utils.to_categorical(y_train)
#y_test = np_utils.to_categorical(y_test)
#搭建网络
def baseline():
    """
    optimizer:优化器,如Adam
    loss:计算损失,当使用categorical_crossentropy损失函数时,标签应为多类模式,例如如果你有10个类别,
    每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0
    metrics: 列表,包含评估模型在训练和测试时的性能的指标
    """
    model=Sequential()
    #第一步是确定输入层的数目:在创建模型时用input_dim参数确定,例如,有784个个输入变量,就设成num_pixels。
    #全连接层用Dense类定义:第一个参数是本层神经元个数,然后是初始化方式和激活函数,初始化方法有0到0.05的连续型均匀分布(uniform
    #Keras的默认方法也是这个,也可以用高斯分布进行初始化normal,初始化实际就是该层连接上权重与偏置的初始化
    model.add(Dense(num_pixels,input_dim=num_pixels,kernel_initializer='normal',activation='relu'))
    #softmax是一种用到该层所有神经元的激活函数
    model.add(Dense(num,kernel_initializer='normal',activation='softmax'))
    #categorical_crossentropy适用于多分类问题,并使用softmax作为输出层的激活函数的情况
    model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
    return model
#训练模型
model = baseline()
"""
batch_size
整数
每次梯度更新的样本数。
未指定,默认为32
epochs
整数
训练模型迭代次数
verbose
日志展示,整数
0:为不在标准输出流输出日志信息
1:显示进度条
2:每个epoch输出一行记录
对于一个有 2000 个训练样本的数据集,将 2000 个样本分成大小为 500 的 batch,那么完成一个 epoch 需要 4 个 iteration
"""
model.fit(X_train,y_train,validation_data=(X_test,y_test),epochs=10,batch_size=200,verbose=2)
#模型概括打印
model.summary()
#model.evaluate()返回的是 损失值和你选定的指标值(例如,精度accuracy)
"""
verbose:控制日志显示的方式
verbose = 0  不在标准输出流输出日志信息
verbose = 1  输出进度条记录
"""
scores = model.evaluate(X_test,y_test,verbose=0)
print(scores)
#模型保存
model_dir="./Dense.h5"
model.save(model_dir)

CNN训练:

"""
模型构建与训练
Sequential 模型结构: 层(layers)的线性堆栈,它是一个简单的线性结构,没有多余分支,是多个网络层的堆叠
多少个滤波器就输出多少个特征图,即卷积核(滤波器)的深度
3通道RGB图片,一个滤波器有3个通道的小卷积核,但还是只算1个滤波器
"""
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
#Flatten层用来将输入“压平”,即把多维的输入一维化,
#常用在从卷积层到全连接层的过渡
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
#模拟原始灰度数据读入
img_size=28
num=10
mnist=input_data.read_data_sets("./data",one_hot=True)
X_train,y_train,X_test,y_test=mnist.train.images,mnist.train.labels,mnist.test.images,mnist.test.labels
X_train=X_train.reshape(-1,img_size,img_size)
X_test=X_test.reshape(-1,img_size,img_size)
X_train=X_train*255
X_test=X_test*255
y_train=y_train.reshape(-1,num)
y_test=y_test.reshape(-1,num)
print(X_train.shape) #(55000, 28, 28)
print(y_train.shape) #(55000, 10)
#此处卷积输入的形状要与模型中的input_shape匹配
X_train = X_train.reshape(X_train.shape[0],28,28,1).astype('float32')
X_test = X_test.reshape(X_test.shape[0],28,28,1).astype('float32')
print(X_train.shape)#(55000,28,28,1)
#归一化
X_train=X_train/255
X_test=X_test/255
# one hot编码,这里编好了,省略
#y_train = np_utils.to_categorical(y_train)
#y_test = np_utils.to_categorical(y_test)
#搭建CNN网络
def CNN():
    """
    第一层是卷积层。该层有32个feature map,作为模型的输入层,接受[pixels][width][height]大小的输入数据。feature map的大小是1*5*5,其输出接一个‘relu'激活函数
    下一层是pooling层,使用了MaxPooling,大小为2*2
    Flatten压缩一维后作为全连接层的输入层
    接下来是全连接层,有128个神经元,激活函数采用‘relu'
    最后一层是输出层,有10个神经元,每个神经元对应一个类别,输出值表示样本属于该类别的概率大小
    """
    model = Sequential()
    model.add(Conv2D(32, (5, 5), input_shape=(img_size,img_size,1), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dense(num, activation='softmax'))
    #编译
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
#模型训练
model=CNN()
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=200, verbose=1)
model.summary()
scores = model.evaluate(X_test,y_test,verbose=1)
print(scores)
#模型保存
model_dir="./CNN.h5"
model.save(model_dir)

到此这篇关于mnist的文章就介绍到这了,希望可以帮到你们,更多相关深度学习内容请搜索以前的文章或继续浏览下面的相关文章,希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程