音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

浅谈dataframe两列相乘构造新特征
日期:2021-09-08 14:21:07   来源:脚本之家

假如我们要构建新特征b

目的是从a中筛选出数值在4~6之间的数据,如果符合就是True,否则就是False。

那么代码如下

import pandas as pd
lists=pd.DataFrame({'a':[1,2,3,4,5,6,7,8,9]})
lists['b']=(lists['a']<6).mul(lists['a']>4)

补充:dataframe求两列的相乘,再将输出为新的一列

看代码吧~

df["new"]=df3["rate"]*df3["duration"]

new为新的一列的列名

rate和duration为需要相乘的列

加,减,乘,除都适用!

补充:DataFrame衍生新特征操作

1.DataFrame中某一列的值衍生为新的特征

#将LBL1特征的值衍生为one-hot形式的新特征
piao=df_train_log.LBL1.value_counts().index
#先构造一个临时的df
df_tmp=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
#将所有的新特征列都置为0
for i in piao:
    df_tmp['PIAO_'+i]=0
#进行分组便利,有这个特征就置为1,原数据每个USRID有多条记录,所以分组统计
group=df_train_log.groupby(['USRID'])
for k in group.groups.keys():
    t = group.get_group(k)
    id=t.USRID.value_counts().index[0]
    tmp_list=t.LBL1.value_counts().index
    for j in tmp_list:
        df_tmp['PIAO_'+j].loc[df_tmp.USRID==id]=1

2.分组统计,选出同一USRID下该变量中出现次数最多的值项

group=df_train_log.groupby(['USRID'])
lt=[]
list_max_lbl1=[]
list_max_lbl2=[]
list_max_lbl3=[]
for k in group.groups.keys():
    t = group.get_group(k)
    #通过value_counts找出出现次数最多的项
    argmx = np.argmax(t['EVT_LBL'].value_counts())
    lbl1_max=np.argmax(t['LBL1'].value_counts())
    lbl2_max=np.argmax(t['LBL2'].value_counts())
    lbl3_max=np.argmax(t['LBL3'].value_counts())
    list_max_lbl1.append(lbl1_max)
    list_max_lbl2.append(lbl2_max)
    list_max_lbl3.append(lbl3_max)
    #只留下出现次数最多的项
    c = t[t['EVT_LBL']==argmx].drop_duplicates('EVT_LBL')
    #放入list中
    lt.append(c)
#构造一个新的df
df_train_log_new = pd.concat(lt)
#另外又构造了三个特征,LBL1-LBL3分别出现次数最多的项
df_train_log_new['LBL1_MAX']=list_max_lbl1
df_train_log_new['LBL2_MAX']=list_max_lbl2
df_train_log_new['LBL3_MAX']=list_max_lbl3

3.衍生出某天是否发生的ont-hot新特征

#创造临时df,星期三,星期六,星期七,都默认置为0
df_day=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
df_day['weekday_3']=0
df_day['weekday_6']=0
df_day['weekday_7']=0
#分组统计,有就置为1,没有置为0
group=df_train_log.groupby(['USRID'])
for k in group.groups.keys():
    t = group.get_group(k)
    id=t.USRID.value_counts().index[0]
    tmp_list=t.occ_dayofweek.value_counts().index
    for j in tmp_list:
        if j==3:
            df_day['weekday_3'].loc[df_tmp.USRID==id]=1
        elif j==6:
            df_day['weekday_6'].loc[df_tmp.USRID==id]=1
        elif j==7:
            df_day['weekday_7'].loc[df_tmp.USRID==id]=1

4.查看用户一共停留在APP上多少秒,共有几天看了APP

#首先将日期转化为时间戳,并赋予一个新特征
tmp_list=[]
for i in df_train_log.OCC_TIM:
    d=datetime.datetime.strptime(str(i),"%Y-%m-%d %H:%M:%S")
    evt_time = time.mktime(d.timetuple())
    tmp_list.append(evt_time)
df_train_log['time']=tmp_list
#每下一行减去上一行,得到app停留时间
df_train_log['diff_time']=df_train_log.time-df_train_log.time.shift(1)
#构造一个新的dataFrame,分组得到查看app的天数
df_time=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
#有几天查看
df_time['days']=0
group=df_train_log.groupby(['USRID'])
for k in group.groups.keys():
    t = group.get_group(k)
    id=set(t.USRID).pop()
    df_time['days'].loc[df_time.USRID==id]= len(t.occ_day.value_counts().index)
#去掉一些异常时间戳,比如间隔两天的相减,肯定不合适,na的也去掉了
df_train_log=df_train_log[(df_train_log.diff_time>0)&(df_train_log.diff_time<8000)]
#累计停留时间
group_stayTime=df_train_log['diff_time'].groupby(df_train_log['USRID']).sum()
#创造新的df
df_tmp=pd.DataFrame({'USRID':list(group_stayTime.index.values),'stay_time':list(group_stayTime.values)})
#合并成一个新的df
df=pd.merge(df_time,df_tmp,on=['USRID'],how='left')#合并后,缺失的停留时间,置为0df.fillna(0,axis=1,inplace=True)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程