音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

使用numpy实现topk函数操作(并排序)
日期:2021-09-08 14:22:37   来源:脚本之家

np.argpartition 难以解决topK

topK是常用的一个功能,在python中,numpy等计算库使用了丰富的底层优化,对于矩阵计算的效率远高于python的for-loop实现。因此,我们希望尽量用一些numpy函数的组合实现topK。

pytorch 库提供了topk函数,可以将高维数组沿某一维度(该维度共N项),选出最大(最小)的K项并排序。返回排序结果和index信息。奇怪的是,更轻量级的numpy库并没有直接提供 topK 函数。numpy只提供了argpartition 和 partition,可以将最大(最小)的K项排到前K位。以argpartition为例,最小的3项排到了前3位:

>>> x = np.array([3, 5, 6, 4, 2, 7, 1])
>>> x[np.argpartition(x, 3)]
array([2, 1, 3, 4, 5, 7, 6])

注意,argpartition实现的是 partial sorting,如上例,前3项和其余项被分开,但是两部分各自都是不排序的!而我们可能更想要topK的几项排好序(其余项则不作要求)。因此,下面提供一种基于argpartition的topK方法。

一个naive方法

最简单的方法自然是全排序,然后取前K项。缺点在于,要把topK之外的数据也进行排序,当K << N时较为浪费时间,复杂度为O ( n log ⁡ n ) O(n \log n)O(nlogn):

def naive_arg_topK(matrix, K, axis=0):
    """
    perform topK based on np.argsort
    :param matrix: to be sorted
    :param K: select and sort the top K items
    :param axis: dimension to be sorted.
    :return:
    """
    full_sort = np.argsort(matrix, axis=axis)
    return full_sort.take(np.arange(K), axis=axis)

# Example
>>> dists = np.random.permutation(np.arange(30)).reshape(6, 5)
array([[17, 28,  1, 24, 23,  8],
       [ 9, 21,  3, 22,  4,  5],
       [19, 12, 26, 11, 13, 27],
       [10, 15, 18, 14,  7, 16],
       [ 0, 25, 29,  2,  6, 20]])
>>> naive_arg_topK(dists, 2, axis=0)
array([[4, 2, 0, 4, 1, 1],
       [1, 3, 1, 2, 4, 0]])
>>> naive_arg_topK(dists, 2, axis=1)
array([[2, 5],
       [2, 4],
       [3, 1],
       [4, 0],
       [0, 3]])

基于partition的方法

对于 np.argpartition 函数,复杂度可能下降到 O ( n log ⁡ K ) O(n \log K)O(nlogK),很多情况下,K << N,此时naive方法有优化的空间。

以下方法首先选出 topK 项,然后仅对前topK项进行排序(matrix仅限2d-array)。

def partition_arg_topK(matrix, K, axis=0):
    """
    perform topK based on np.argpartition
    :param matrix: to be sorted
    :param K: select and sort the top K items
    :param axis: 0 or 1. dimension to be sorted.
    :return:
    """
    a_part = np.argpartition(matrix, K, axis=axis)
    if axis == 0:
        row_index = np.arange(matrix.shape[1 - axis])
        a_sec_argsort_K = np.argsort(matrix[a_part[0:K, :], row_index], axis=axis)
        return a_part[0:K, :][a_sec_argsort_K, row_index]
    else:
        column_index = np.arange(matrix.shape[1 - axis])[:, None]
        a_sec_argsort_K = np.argsort(matrix[column_index, a_part[:, 0:K]], axis=axis)
        return a_part[:, 0:K][column_index, a_sec_argsort_K]

# Example
>>> dists = np.random.permutation(np.arange(30)).reshape(6, 5)
array([[17, 28,  1, 24, 23,  8],
       [ 9, 21,  3, 22,  4,  5],
       [19, 12, 26, 11, 13, 27],
       [10, 15, 18, 14,  7, 16],
       [ 0, 25, 29,  2,  6, 20]])
>>> partition_arg_topK(dists, 2, axis=0)
array([[4, 2, 0, 4, 1, 1],
       [1, 3, 1, 2, 4, 0]])
>>> partition_arg_topK(dists, 2, axis=1)
array([[2, 5],
       [2, 4],
       [3, 1],
       [4, 0],
       [0, 3]])

大数据量测试

对shape(5000, 100000)的矩阵进行topK排序,测试时间为:

K partition(s) naive(s)
10 8.884 22.604
100 9.012 22.458
1000 8.904 22.506
5000 11.305 22.844

补充:python堆排序实现TOPK问题

# 构建小顶堆跳转def sift(li, low, higt):
    tmp = li[low]
    i = low
    j = 2 * i + 1
    while j <= higt:  # 情况2:i已经是最后一层
        if j + 1 <= higt and li[j + 1] < li[j]:  # 右孩子存在并且小于左孩子
            j += 1
        if tmp > li[j]:
            li[i] = li[j]
            i = j
            j = 2 * i + 1
        else:
            break  # 情况1:j位置比tmp小
    li[i] = tmp


def top_k(li, k):
    heap = li[0:k]
    # 建堆
    for i in range(k // 2 - 1, -1, -1):
        sift(heap, i, k - 1)
    for i in range(k, len(li)):
        if li[i] > heap[0]:
            heap[0] = li[i]
            sift(heap, 0, k - 1)
    # 挨个输出
    for i in range(k - 1, -1, -1):
        heap[0], heap[i] = heap[i], heap[0]
        sift(heap, 0, i - 1)
    return heap


li = [0, 8, 6, 2, 4, 9, 1, 4, 6]
print(top_k(li, 3))

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程