音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Python数据分析之Python和Selenium爬取BOSS直聘岗位
日期:2021-09-08 14:24:50   来源:脚本之家

一、数据爬取的代码

#encoding='utf-8'
from selenium import webdriver
import time
import re
import pandas as pd
import os

def close_windows():
    #如果有登录弹窗,就关闭
    try:
        time.sleep(0.5)
        if dr.find_element_by_class_name("jconfirm").find_element_by_class_name("closeIcon"):
            dr.find_element_by_class_name("jconfirm").find_element_by_class_name("closeIcon").click()
    except BaseException as e:
        print('close_windows,没有弹窗',e)


def get_current_region_job(k_index):
    flag = 0
    # page_num_set=0#每区获取多少条数据,对30取整

    df_empty = pd.DataFrame(columns=['岗位', '地点', '薪资', '工作经验', '学历', '公司', '技能'])
    while (flag == 0):
        # while (page_num_set<151)&(flag == 0):#每次只能获取150条信息
        time.sleep(0.5)
        close_windows()
        job_list = dr.find_elements_by_class_name("job-primary")
        for job in job_list:#获取当前页的职位30条
            job_name = job.find_element_by_class_name("job-name").text
            # print(job_name)
            job_area = job.find_element_by_class_name("job-area").text
            salary = job.find_element_by_class_name("red").get_attribute("textContent")  # 获取薪资
            # salary_raw = job.find_element_by_class_name("red").get_attribute("textContent")  # 获取薪资
            # salary_split = salary_raw.split('·')  # 根据·分割
            # salary = salary_split[0]  # 只取薪资,去掉多少薪

            # if re.search(r'天', salary):
            #     continue

            experience_education = job.find_element_by_class_name("job-limit").find_element_by_tag_name(
                "p").get_attribute("innerHTML")

            # experience_education_raw = '1-3年<em class="vline"></em>本科'
            experience_education_raw = experience_education
            split_str = re.search(r'[a-zA-Z =<>/"]{23}', experience_education_raw)  # 搜索分割字符串<em class="vline"></em>
            # print(split_str)

            experience_education_replace = re.sub(r'[a-zA-Z =<>/"]{23}', ",", experience_education_raw)  # 分割字符串替换为逗号
            # print(experience_education_replace)

            experience_education_list = experience_education_replace.split(',')  # 根据逗号分割
            # print('experience_education_list:',experience_education_list)

            if len(experience_education_list)!=2:
                print('experience_education_list不是2个,跳过该数据',experience_education_list)
                break
            experience = experience_education_list[0]
            education = experience_education_list[1]
            # print(experience)
            # print(education)



            company = job.find_element_by_class_name("company-text").find_element_by_class_name("name").text

            skill_list = job.find_element_by_class_name("tags").find_elements_by_class_name("tag-item")
            skill = []
            for skill_i in skill_list:
                skill_i_text = skill_i.text
                if len(skill_i_text) == 0:
                    continue
                skill.append(skill_i_text)
            # print(job_name)
            # print(skill)

            df_empty.loc[k_index, :] = [job_name, job_area, salary, experience, education, company, skill]
            k_index = k_index + 1
            # page_num_set=page_num_set+1
            print("已经读取数据{}条".format(k_index))

        close_windows()
        try:#点击下一页
            cur_page_num=dr.find_element_by_class_name("page").find_element_by_class_name("cur").text
            # print('cur_page_num',cur_page_num)

            #点击下一页
            element = dr.find_element_by_class_name("page").find_element_by_class_name("next")
            dr.execute_script("arguments[0].click();", element)
            time.sleep(1)
            # print('点击下一页')

            new_page_num=dr.find_element_by_class_name("page").find_element_by_class_name("cur").text
            # print('new_page_num',new_page_num)

            if cur_page_num==new_page_num:
                flag = 1
                break

        except BaseException as e:
            print('点击下一页错误',e)
            break

    print(df_empty)
    if os.path.exists("数据.csv"):#存在追加,不存在创建
        df_empty.to_csv('数据.csv', mode='a', header=False, index=None, encoding='gb18030')
    else:
        df_empty.to_csv("数据.csv", index=False, encoding='gb18030')

    return k_index








def main():
    # 打开浏览器
    # dr = webdriver.Firefox()
    global dr
    dr = webdriver.Chrome()
    # dr = webdriver.Ie()

    # # 后台打开浏览器
    # option=webdriver.ChromeOptions()
    # option.add_argument('headless')
    # dr = webdriver.Chrome(chrome_options=option)
    # print("打开浏览器")

    # 将浏览器最大化显示
    dr.maximize_window()

    # 转到目标网址
    # dr.get("https://www.zhipin.com/job_detail/?query=Python&city=100010000&industry=&position=")#全国
    dr.get("https://www.zhipin.com/c101010100/?query=Python&ka=sel-city-101010100")#北京
    print("打开网址")
    time.sleep(5)

    k_index = 0#数据条数、DataFrame索引

    flag_hot_city=0

    for i in range(3,17,1):
        # print('第',i-2,'页')

        # try:

        # 获取城市
        close_windows()
        hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
        close_windows()
        # hot_city_list[i].click()#防止弹窗,改为下面两句
        # element_hot_city_list_first = hot_city_list[i]
        dr.execute_script("arguments[0].click();", hot_city_list[i])

        # 输出城市名
        close_windows()
        hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
        print('城市:{}'.format(i-2),hot_city_list[i].text)
        time.sleep(0.5)


        # 获取区县
        for j in range(1,50,1):
            # print('第', j , '个区域')
            # try:

            # close_windows()
            # hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")

            # 在这个for循环点一下城市,不然识别不到当前页面已经更新了
            close_windows()
            hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
            close_windows()
            # hot_city_list[i].click()#防止弹窗,改为下面
            dr.execute_script("arguments[0].click();", hot_city_list[i])

            #输出区县名称
            close_windows()
            city_district = dr.find_element_by_class_name("condition-district").find_elements_by_tag_name("a")
            if len(city_district)==j:
                print('遍历完所有区县,没有不可点击的,跳转下一个城市')
                break
            print('区县:',j, city_district[j].text)
            # city_district_value=city_district[j].text#当前页面的区县值


            # 点击区县
            close_windows()
            city_district=  dr.find_element_by_class_name("condition-district").find_elements_by_tag_name("a")
            close_windows()
            # city_district[j].click()]#防止弹窗,改为下面两句
            # element_city_district = city_district[j]
            dr.execute_script("arguments[0].click();", city_district[j])



            #判断区县是不是点完了
            close_windows()
            hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
            print('点击后这里应该是区县', hot_city_list[1].text)#如果是不限,说明点完了,跳出

            hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
            print('如果点完了,这里应该是不限:',hot_city_list[1].text)

            hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
            if hot_city_list[1].text == '不限':
                print('当前区县已经点完了,点击下一个城市')
                flag_hot_city=1
                break


            close_windows()
            k_index = get_current_region_job(k_index)#获取职位,爬取数据


            # 重新点回城市页面,再次获取区县。但此时多了区县,所以i+1
            close_windows()
            hot_city_list = dr.find_element_by_class_name("condition-city").find_elements_by_tag_name("a")
            close_windows()
            # hot_city_list[i+1].click()#防止弹窗,改为下面两句
            # element_hot_city_list_again = hot_city_list[i+1]
            dr.execute_script("arguments[0].click();", hot_city_list[i+1])



            # except BaseException as e:
            #     print('main的j循环-获取区县发生错误:', e)
            #     close_windows()

            time.sleep(0.5)


        # except BaseException as e:
        #     print('main的i循环发生错误:',e)
        #     close_windows()

        time.sleep(0.5)

    # 退出浏览器
    dr.quit()
    # p1.close()



if __name__ == '__main__':
    main()

二、获取到的数据如图所示

BOSS直聘Python岗位的数据爬取

三、数据分析的代码

# coding=utf-8
import collections
import wordcloud
import re
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 设置正常显示符号


def create_dir_not_exist(path):  # 判断文件夹是否存在,不存在-新建
    if not os.path.exists(path):
        os.mkdir(path)


create_dir_not_exist(r'./image')
create_dir_not_exist(r'./image/city')

data = pd.read_csv('数据.csv', encoding='gb18030')
data_df = pd.DataFrame(data)
print("\n查看是否有缺失值\n", data_df.isnull().sum())

data_df_del_empty = data_df.dropna(subset=['岗位'], axis=0)
# print("\n删除缺失值‘岗位'的整行\n",data_df_del_empty)
data_df_del_empty = data_df_del_empty.dropna(subset=['公司'], axis=0)
# print("\n删除缺失值‘公司'的整行\n",data_df_del_empty)

print("\n查看是否有缺失值\n", data_df_del_empty.isnull().sum())
print('去除缺失值后\n', data_df_del_empty)

data_df_python_keyword = data_df_del_empty.loc[data_df_del_empty['岗位'].str.contains('Python|python')]
# print(data_df_python_keyword)#筛选带有python的行

# 区间最小薪资
data_df_python_keyword_salary = data_df_python_keyword['薪资'].str.split('-', expand=True)[0]
print(data_df_python_keyword_salary)  # 区间最小薪资
# Dataframe新增一列  在第 列新增一列名为' ' 的一列 数据
data_df_python_keyword.insert(7, '区间最小薪资(K)', data_df_python_keyword_salary)
print(data_df_python_keyword)

# 城市地区
data_df_python_keyword_location_city = data_df_python_keyword['地点'].str.split('·', expand=True)[0]
print(data_df_python_keyword_location_city)  # 北京
data_df_python_keyword_location_district = data_df_python_keyword['地点'].str.split('·', expand=True)[1]
print(data_df_python_keyword_location_district)  # 海淀区

data_df_python_keyword_location_city_district = []
for city, district in zip(data_df_python_keyword_location_city, data_df_python_keyword_location_district):
    city_district = city + district
    data_df_python_keyword_location_city_district.append(city_district)
print(data_df_python_keyword_location_city_district)  # 北京海淀区
# Dataframe新增一列  在第 列新增一列名为' ' 的一列 数据
data_df_python_keyword.insert(8, '城市地区', data_df_python_keyword_location_city_district)
print(data_df_python_keyword)

data_df_python_keyword.insert(9, '城市', data_df_python_keyword_location_city)
data_df_python_keyword.insert(10, '地区', data_df_python_keyword_location_district)
data_df_python_keyword.to_csv("data_df_python_keyword.csv", index=False, encoding='gb18030')

print('-------------------------------------------')


def draw_bar(row_lable, title):
    figsize_x = 10
    figsize_y = 6
    global list1_education, list2_education, df1, df2
    plt.figure(figsize=(figsize_x, figsize_y))
    list1_education = []
    list2_education = []
    for df1, df2 in data_df_python_keyword.groupby(row_lable):
        list1_education.append(df1)
        list2_education.append(len(df2))
    # print(list1_education)
    # print(list2_education)
    # 利用 * 解包方式 将 一个排序好的元组,通过元组生成器再转成list
    # print(*sorted(zip(list2_education,list1_education)))
    # print(sorted(zip(list2_education,list1_education)))
    # 排序,两个列表对应原始排序,按第几个列表排序,注意先后位置
    list2_education, list1_education = (list(t) for t in zip(*sorted(zip(list2_education, list1_education))))
    plt.bar(list1_education, list2_education)
    plt.title('{}'.format(title))
    plt.savefig('./image/{}分析.jpg'.format(title))
    # plt.show()
    plt.close()


# 学历
draw_bar('学历', '学历')
draw_bar('工作经验', '工作经验')
draw_bar('区间最小薪资(K)', '14个热门城市的薪资分布情况(K)')
# -----------------------------------------
# 根据城市地区求均值
list_group_city1 = []
list_group_city2 = []

for df1, df2 in data_df_python_keyword.groupby(data_df_python_keyword['城市地区']):
    # print(df1)
    # print(df2)
    list_group_city1.append(df1)
    salary_list_district = [int(i) for i in (df2['区间最小薪资(K)'].values.tolist())]
    district_salary_mean = round(np.mean(salary_list_district), 2)  # 每个区县的平均薪资 round(a, 2)保留2位小数
    list_group_city2.append(district_salary_mean)
    list_group_city2, list_group_city1 = (list(t) for t in
                                          zip(*sorted(zip(list_group_city2, list_group_city1), reverse=False)))
#
# print(list_group_city1)
# print(list_group_city2)

plt.figure(figsize=(10, 50))
plt.barh(list_group_city1, list_group_city2)
# 坐标轴上的文字说明
for ax, ay in zip(list_group_city1, list_group_city2):
    # 设置文字说明 第一、二个参数:坐标轴上的值; 第三个参数:说明文字;ha:垂直对齐方式;va:水平对齐方式
    plt.text(ay, ax, '%.2f' % ay, ha='center', va='bottom')
plt.title('14个热门城市的各区县招聘工资情况(K)')
plt.savefig('./image/14个热门城市的各区县招聘工资情况(K).jpg')
# plt.show()
plt.close()

# -----------------------------------------
# 根据城市分组排序,

list_group_city11 = []
list_group_city22 = []
list_group_city33 = []
list_group_city44 = []

for df_city1, df_city2 in data_df_python_keyword.groupby(data_df_python_keyword['城市']):
    # print(df_city1)#市
    # print(df_city2)
    list_group_district2 = []  # 区县列表
    district_mean_salary2 = []  # 工资均值列表
    for df_district1, df_district2 in df_city2.groupby(data_df_python_keyword['地区']):
        # print(df_district1)#区县
        # print(df_district2)#工作
        list_group_district2.append(df_district1)  # 记录区县
        salary_list_district2 = [int(i) for i in (df_district2['区间最小薪资(K)'].values.tolist())]  # 工资列表
        district_salary_mean2 = round(np.mean(salary_list_district2), 2)  # 每个区县的平均薪资 round(a, 2)保留2位小数
        district_mean_salary2.append(district_salary_mean2)  # 记录区县的平均工作的列表

    district_mean_salary2, list_group_district2 = (list(tt) for tt in zip(
        *sorted(zip(district_mean_salary2, list_group_district2), reverse=True)))
    plt.figure(figsize=(10, 6))
    plt.bar(list_group_district2, district_mean_salary2)

    # 坐标轴上的文字说明
    for ax, ay in zip(list_group_district2, district_mean_salary2):
        # 设置文字说明 第一、二个参数:坐标轴上的值; 第三个参数:说明文字;ha:垂直对齐方式;va:水平对齐方式
        plt.text(ax, ay, '%.2f' % ay, ha='center', va='bottom')

    plt.title('14个热门城市的各区县招聘工资情况_{}(K)'.format(df_city1))
    plt.savefig('./image/city/14个热门城市的各区县招聘工资情况_{}(K).jpg'.format(df_city1))
    # plt.show()
    plt.close()

# ----------------------------------------------------


skill_all = data_df_python_keyword['技能']
print(skill_all)

skill_list = []

for i in skill_all:
    # print(type(i))
    print(i)
    # print(i.split(", | ' | \[ | \]  |  \" | "))
    result = re.split(r'[,\' \[, \]  ]', i)
    print(result)
    # if type(i) == list:
    skill_list = skill_list + result
print('++++++++++++++++++++++++++++++++')
# print(skill_list)

list_new = skill_list

# 词频统计
word_counts = collections.Counter(list_new)  # 对分词做词频统计
word_counts_top10 = word_counts.most_common(30)  # 获取前10最高频的词
# print (word_counts_top10) # 输出检查
# print (word_counts_top10[0][0]) # 输出检查

# 生成柱状图
list_x = []
list_y = []
for i in word_counts_top10:
    list_x.append(i[0])
    list_y.append(i[1])
print('list_x', list_x[1:])
print('list_y', list_y[1:])
plt.figure(figsize=(30, 5))
plt.bar(list_x[1:], list_y[1:])
plt.savefig('./image/技能栈_词频_柱状图.png')
# plt.show()
plt.close()

list_new = " ".join(list_new)  # 列表转字符串,以空格间隔
# print(list_new)


wc = wordcloud.WordCloud(
    width=800,
    height=600,
    background_color="#ffffff",  # 设置背景颜色
    max_words=50,  # 词的最大数(默认为200)
    max_font_size=60,  # 最大字体尺寸
    min_font_size=10,  # 最小字体尺寸(默认为4)
    # colormap='bone',  # string or matplotlib colormap, default="viridis"
    colormap='hsv',  # string or matplotlib colormap, default="viridis"
    random_state=20,  # 设置有多少种随机生成状态,即有多少种配色方案
    # mask=plt.imread("mask2.gif"),  # 读取遮罩图片!!
    font_path='simhei.ttf'
)
my_wordcloud = wc.generate(list_new)

plt.imshow(my_wordcloud)
plt.axis("off")
# plt.show()
wc.to_file('./image/技能栈_词云.png')  # 保存图片文件
plt.close()

四、学历分析

在这里插入图片描述

五、工作经验分析

在这里插入图片描述

六、14个热门城市的各区县招聘薪资情况

在这里插入图片描述

七、各城市各区县的薪资情况

北京

在这里插入图片描述

上海

在这里插入图片描述

其余12个城市不再展示,生成代码都一样

八、技能栈

请添加图片描述
请添加图片描述

到此这篇关于Python数据分析之Python和Selenium爬取BOSS直聘岗位的文章就介绍到这了,更多相关Python和Selenium爬取BOSS直聘内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程