音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)
日期:2021-09-08 14:31:45   来源:脚本之家

浅谈tensorflow语义分割api的使用(deeplab训练cityscapes)

安装教程:

cityscapes训练:

遇到的坑:

1. 环境:

- tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+py3.5

- 使用最新的tensorflow1.12或者1.10都不行,报错:报错不造卷积算法(convolution algorithm...)

2. 数据集转换

# Exit immediately if a command exits with a non-zero status.
set -e
CURRENT_DIR=$(pwd)
WORK_DIR="."
# Root path for Cityscapes dataset.
CITYSCAPES_ROOT="${WORK_DIR}/cityscapes"
# Create training labels.
python "${CITYSCAPES_ROOT}/cityscapesscripts/preparation/createTrainIdLabelImgs.py"
# Build TFRecords of the dataset.
# First, create output directory for storing TFRecords.
OUTPUT_DIR="${CITYSCAPES_ROOT}/tfrecord"
mkdir -p "${OUTPUT_DIR}"
BUILD_SCRIPT="${CURRENT_DIR}/build_cityscapes_data.py"
echo "Converting Cityscapes dataset..."
python "${BUILD_SCRIPT}" \
  --cityscapes_root="${CITYSCAPES_ROOT}" \
  --output_dir="${OUTPUT_DIR}" \

- 首先当前conda环境下安装cityscapesScripts模块,要支持py3.5才行;

- 由于cityscapesscripts/preparation/createTrainIdLabelImgs.py里面默认会把数据集gtFine下面的test,train,val文件夹json文件都转为TrainIdlandelImgs.png;然而在test文件下有很多json文件编码格式是错误的,大约十几张,每次报错,然后将其剔除!!!

- 然后执行build_cityscapes_data.py将img,lable转换为tfrecord格式。

3. 训练cityscapes代码

- 将训练代码写成脚本文件:train_deeplab_cityscapes.sh

#!/bin/bash
# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco

PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt'
PATH_TO_TRAIN_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab'
# From tensorflow/models/research/
python "${WORK_DIR}"/train.py \
    --logtostderr \
    --training_number_of_steps=40000 \
    --train_split="train" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --train_crop_size=513 \
    --train_crop_size=513 \
    --train_batch_size=1 \
    --fine_tune_batch_norm=False \
    --dataset="cityscapes" \
    --tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

参数分析:

training_number_of_steps: 训练迭代次数;

train_crop_size:训练图片的裁剪大小,因为我的GPU只有8G,故我将这个设置为513了;

train_batch_size: 训练的batchsize,也是因为硬件条件,故保持1;

fine_tune_batch_norm=False :是否使用batch_norm,官方建议,如果训练的batch_size小于12的话,须将该参数设置为False,这个设置很重要,否则的话训练时会在2000步左右报错

tf_initial_checkpoint:预训练的初始checkpoint,这里设置的即是前面下载的../research/deeplab/backbone/deeplabv3_cityscapes_train/model.ckpt.index

train_logdir: 保存训练权重的目录,注意在开始的创建工程目录的时候就创建了,这里设置为"../research/deeplab/exp/train_on_train_set/train/"

dataset_dir:数据集的地址,前面创建的TFRecords目录。这里设置为"../dataset/cityscapes/tfrecord"

4.验证测试

- 验证脚本:

#!/bin/bash
# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco
PATH_TO_INITIAL_CHECKPOINT='/home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/'
PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_EVAL_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/eval/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab'
# From tensorflow/models/research/
python "${WORK_DIR}"/eval.py \
    --logtostderr \
    --eval_split="val" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --eval_crop_size=1025 \
    --eval_crop_size=2049 \
    --dataset="cityscapes" \
    --checkpoint_dir=${PATH_TO_INITIAL_CHECKPOINT} \
    --eval_logdir=${PATH_TO_EVAL_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

- rusult:model.ckpt-40000为在初始化模型上训练40000次迭代的模型;后面用初始化模型测试miou_1.0还是很低,不知道是不是有什么参数设置的问题!!!

- 注意,如果使用官方提供的checkpoint,压缩包中是没有checkpoint文件的,需要手动添加一个checkpoint文件;初始化模型中是没有提供chekpoint文件的。

INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/model.ckpt-40000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting evaluation at 2018-12-18-07:13:08
INFO:tensorflow:Evaluation [50/500]
INFO:tensorflow:Evaluation [100/500]
INFO:tensorflow:Evaluation [150/500]
INFO:tensorflow:Evaluation [200/500]
INFO:tensorflow:Evaluation [250/500]
INFO:tensorflow:Evaluation [300/500]
INFO:tensorflow:Evaluation [350/500]
INFO:tensorflow:Evaluation [400/500]
INFO:tensorflow:Evaluation [450/500]
miou_1.0[0.478293568]
INFO:tensorflow:Waiting for new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/
INFO:tensorflow:Found new checkpoint at /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
INFO:tensorflow:Graph was finalized.
2018-12-18 15:18:05.210957: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1435] Adding visible gpu devices: 0
2018-12-18 15:18:05.211047: I tensorflow/core/common_runtime/gpu/gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-12-18 15:18:05.211077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:929]      0 
2018-12-18 15:18:05.211100: I tensorflow/core/common_runtime/gpu/gpu_device.cc:942] 0:   N 
2018-12-18 15:18:05.211645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1053] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 9404 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from /home/rjw/tf-models/research/deeplab/pretrain_models/deeplabv3_cityscapes_train/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting evaluation at 2018-12-18-07:18:06
INFO:tensorflow:Evaluation [50/500]
INFO:tensorflow:Evaluation [100/500]
INFO:tensorflow:Evaluation [150/500]
INFO:tensorflow:Evaluation [200/500]
INFO:tensorflow:Evaluation [250/500]
INFO:tensorflow:Evaluation [300/500]
INFO:tensorflow:Evaluation [350/500]
INFO:tensorflow:Evaluation [400/500]
INFO:tensorflow:Evaluation [450/500]
miou_1.0[0.496331513]

5.可视化测试

- 在vis目录下生成分割结果图

#!/bin/bash
# CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --backbone resnet --lr 0.01 --workers 4 --epochs 40 --batch-size 16 --gpu-ids 0,1,2,3 --checkname deeplab-resnet --eval-interval 1 --dataset coco

PATH_TO_CHECKPOINT='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/train/'
PATH_TO_VIS_DIR='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/exp/train_on_train_set/vis/'
PATH_TO_DATASET='/home/rjw/tf-models/research/deeplab/datasets/cityscapes/tfrecord'
WORK_DIR='/home/rjw/tf-models/research/deeplab'

# From tensorflow/models/research/
python "${WORK_DIR}"/vis.py \
    --logtostderr \
    --vis_split="val" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --vis_crop_size=1025 \
    --vis_crop_size=2049 \
    --dataset="cityscapes" \
    --colormap_type="cityscapes" \
    --checkpoint_dir=${PATH_TO_CHECKPOINT} \
    --vis_logdir=${PATH_TO_VIS_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程