音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

关于Numpy之repeat、tile的用法总结
日期:2021-09-08 14:35:41   来源:脚本之家

repeat函数的作用:①扩充数组元素 ②降低数组维度

numpy.repeat(a, repeats, axis=None):若axis=None,对于多维数组而言,可以将多维数组变化为一维数组,然后再根据repeats参数扩充数组元素;若axis=M,表示数组在轴M上扩充数组元素。

下面以3维数组为例,了解下repeat函数的使用方法:

In [1]: import numpy as np 
In [2]: arr = np.arange(12).reshape(1,4,3) 
In [3]: arr
Out[3]:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]]])

①repeats为整数N,axis=None:数组arr首先被扁平化,然后将数组arr中的各个元素 依次重复N次

In [4]: arr.repeat(2)
Out[4]:
array([ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,  8,
        8,  9,  9, 10, 10, 11, 11])

②repeats为整数数组rp_arr,axis=None:数组arr首先被扁平化,然后再将数组arr中元素依次重复对应rp_arr数组中元素对应次数。若rp_arr为一个值的一维数组,则数组arr中各个元素重复相同次数,否则rp_arr数组长度必须和数组arr的长度相等,否则报错

a:rp_arr为单值一维数组,进行广播

In [5]: arr.repeat([2])
Out[5]:
array([ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,  8,
        8,  9,  9, 10, 10, 11, 11])

b:rp_arr长度小于数组arr长度,无法进行广播,报错

In [6]: arr.repeat([2,3,4])
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-d3b52907284c> in <module>()
----> 1 arr.repeat([2,3,4])

ValueError: operands could not be broadcast together with shape (12,) (3,)

c:rp_arr长度和数组arr长度相等

In [7]: arr.repeat(np.arange(12))
Out[7]:
array([ 1,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,  5,  5,  6,  6,
        6,  6,  6,  6,  7,  7,  7,  7,  7,  7,  7,  8,  8,  8,  8,  8,  8,
        8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10,
       10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11])

d:rp_arr长度大于数组arr长度,也无法广播,报错

In [8]: arr.repeat(np.arange(13))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-8-ec8454224d1b> in <module>()
----> 1 arr.repeat(np.arange(13))

ValueError: operands could not be broadcast together with shape (12,) (13,)

结论:两个数组满足广播的条件是两个数组的后缘维度(即从末尾开始算起的维度)的轴长度相等或其中一方的长度为1

③repeats为整数N,axis=M:数组arr的轴M上的每个元素重复N次,M=-1代表最后一条轴

In [9]: arr.repeat(2,axis=0)
Out[9]:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]]])
In [12]: arr.repeat(2,axis=-1)#arr.repeat(2,axis=-1)等同于arr.repeat(2,axis=2)
Out[12]:
array([[[ 0,  0,  1,  1,  2,  2],
        [ 3,  3,  4,  4,  5,  5],
        [ 6,  6,  7,  7,  8,  8],
        [ 9,  9, 10, 10, 11, 11]]])

④repeats为整数数组rp_arr,axis=M:把数组arr1轴M上的元素依次重复对应rp_arr数组中元素对应次数。若rp_arr为一个值的一维数组,则数组arr1轴M上的各个元素重复相同次数,否则rp_arr数组长度必须和数组arr1轴M的长度相等,否则报错

a:rp_arr长度和数组arr1轴M上长度相等

在轴0上扩充数组元素

In [13]: arr1 = np.arange(24).reshape(4,2,3) 
In [14]: arr1
Out[14]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
In [15]: arr1.repeat((1,2,3,4),axis=0)
Out[15]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]]])

在轴1上扩充数组元素

In [19]: arr1.repeat([1,2],axis=1)
Out[19]:
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23],
        [21, 22, 23]]])

b:rp_arr为单值数组时,进行广播

In [20]: arr1.repeat([2],axis=0)
Out[20]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]]])

c:rp_arr和数组arr1某轴不满足广播条件,则报错

In [21]: arr1.repeat((1,2,3),axis=0)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-21-8ae4dc97e410> in <module>()
----> 1 arr1.repeat((1,2,3),axis=0)

ValueError: operands could not be broadcast together with shape (4,) (3,)

tile函数两个作用:①扩充数组元素 ②提升数组维度

numpy.tile(A, reps):根据reps中元素扩充数组A中对应轴上的元素

①reps为整数N:可以把整数N理解成含一个元素N的序列reps,若数组.ndim大于reps序列的长度,则需在reps序列的索引为0的位置开始添加元素1,直到reps的长度和数组的维度数相等,然后数组各轴上的元素依次重复reps序列中元素对应的次数

对于一维数组而言:是整体数组重复N次,从数组的最后一位置开始重复,注意与repeat函数的区别

In [26]: arr3 = np.arange(4) 
In [27]: arr3
Out[27]: array([0, 1, 2, 3]) 
In [28]: np.tile(arr3,2)
Out[28]: array([0, 1, 2, 3, 0, 1, 2, 3])

对多维数组而言:arr2.ndim=3,,reps=[2,],可以看出数组的长度大于序列reps的长度,因此需要向reps中添加元素,变成reps=[1,1,2],然后arr2数组再根据reps中的元素重复其对应轴上的元素,reps=[1,1,2]代表数组arr2在轴0上各个元素重复1次,在轴1上的各个元素重复1次,在轴1上的各个元素重复2次

In [29]: arr2 = np.arange(24).reshape(4,2,3) 
In [30]: arr2
Out[30]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
In [31]: np.tile(arr2,2)
Out[31]:
array([[[ 0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5]],
 
       [[ 6,  7,  8,  6,  7,  8],
        [ 9, 10, 11,  9, 10, 11]],
 
       [[12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17]],
 
       [[18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23]]])

②reps为整数序列rp_arr:若数组.ndim大于rp_arr长度,方法同①相同,若数组ndim小于rp_arr长度,则需在数组的首缘维添加新轴,直到数组的维度数和rp_arr长度相等,然后数组各轴上的元素依次重复reps序列中元素对应的次数

a:数组维度大于rp_arr长度:需rp_arr提升为(1,2,3)

In [33]: arr2 = np.arange(24).reshape(4,2,3) 
In [34]: arr2
Out[34]:
array([[[ 0,  1,  2],
        [ 3,  4,  5]],
 
       [[ 6,  7,  8],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
In [35]: np.tile(arr2,(2,3))
Out[35]:
array([[[ 0,  1,  2,  0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5,  3,  4,  5],
        [ 0,  1,  2,  0,  1,  2,  0,  1,  2],
        [ 3,  4,  5,  3,  4,  5,  3,  4,  5]],
 
       [[ 6,  7,  8,  6,  7,  8,  6,  7,  8],
        [ 9, 10, 11,  9, 10, 11,  9, 10, 11],
        [ 6,  7,  8,  6,  7,  8,  6,  7,  8],
        [ 9, 10, 11,  9, 10, 11,  9, 10, 11]],
 
       [[12, 13, 14, 12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17, 15, 16, 17],
        [12, 13, 14, 12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
       [[18, 19, 20, 18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23, 21, 22, 23],
        [18, 19, 20, 18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23, 21, 22, 23]]])

b:数组的维度小于rp_arr的长度:需在数组的首缘维度新增加一条轴,使其shape变为(1,4,2,3)

In [36]: np.tile(arr2,(2,1,1,3))
Out[36]:
array([[[[ 0,  1,  2,  0,  1,  2,  0,  1,  2],
         [ 3,  4,  5,  3,  4,  5,  3,  4,  5]],
 
        [[ 6,  7,  8,  6,  7,  8,  6,  7,  8],
         [ 9, 10, 11,  9, 10, 11,  9, 10, 11]],
 
        [[12, 13, 14, 12, 13, 14, 12, 13, 14],
         [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
        [[18, 19, 20, 18, 19, 20, 18, 19, 20],
         [21, 22, 23, 21, 22, 23, 21, 22, 23]]],
 
 
       [[[ 0,  1,  2,  0,  1,  2,  0,  1,  2],
         [ 3,  4,  5,  3,  4,  5,  3,  4,  5]],
 
        [[ 6,  7,  8,  6,  7,  8,  6,  7,  8],
         [ 9, 10, 11,  9, 10, 11,  9, 10, 11]],
 
        [[12, 13, 14, 12, 13, 14, 12, 13, 14],
         [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
        [[18, 19, 20, 18, 19, 20, 18, 19, 20],
         [21, 22, 23, 21, 22, 23, 21, 22, 23]]]])

numpy的repeat和tile 用来复制数组

repeat和tile都可以用来复制数组的,但是有一些区别

关键区别在于repeat是对于元素的复制,tile是以整个数组为单位的 ,repeat复制时元素依次复制,注意不要用错,区别类似于[1,1,2,2]和[1,2,1,2]

repeat

用法

np.repeat(a, repeats, axis=None)

重复复制数组a的元素,元素的定义与axis有关,axis不指定时,数组会被展开进行复制,每个元素就是一个值,指定axis时,就是aixis指定维度上的一个元素

a = np.array([[1,2], 
                      [3,4]])

不指定axis,默认None,这时候数组会被展开成1维,再进行复制

np.repeat(a, 2)  # 所有元素依次复制相同的次数

运行结果

参数是列表

np.repeat(a, [1, 2, 1, 2])  # 如果第二个参数是列表,列表长度必须和a的复制可选元素数目相等,这里都是4

在这里插入图片描述

指定axis

指定时,就是指定了复制元素沿的维度,这时候就不会把数组展平,会维持原来的维度数

np.repeat(a, 2,  axi=0)  # 所有沿着0维的元素依次复制相同的次数

结果

np.repeat(a, [1, 2], axis=1)  # 第二个参数是列表,列表长度必须和a的复制可选元素数目相等,这里是2

结果如下,复制元素从第1维度算,可以看到第一列被复制了一次,第二列被复制了两次

结果

tile

用法

np.tile(a, repeats)

复制数组,repeats可以是整数或者元组、数组

repeats是整数

示例如下,它会将数组复制两份,并且在最后一维将两个元素叠加在一起,数组的维数不变,最后一维根据复制次数加倍

结果

repeats是列表或元组

如果列表长度是1,和整数时相同。

列表长度不为1时,列表从后向前看,最后一项是2,所以复制两个数组,在最后一维进行叠加,倒数第二项是3,将前步的结果进行复制,并在倒数第二维,结果如下

结果

当列表的长度超过数组的维数时,和前面类似,从后向前复制,复制结果会增加维度与列表的维数匹配,结果如下,在上面的基础上,增加了一维

在这里插入图片描述

复制结果的shape

在这里插入图片描述

但是对于 简单的单个数组重复,个人更喜欢使用stack和concatenate将同一个数组堆叠起来

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程