音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Pytorch反向传播中的细节-计算梯度时的默认累加操作
日期:2021-09-08 14:38:53   来源:脚本之家

Pytorch反向传播计算梯度默认累加

今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决:

pytorch实现线性回归

先附上试验代码来感受一下:

torch.manual_seed(6)
lr = 0.01   # 学习率
result = []

# 创建训练数据
x = torch.rand(20, 1) * 10
y = 2 * x + (5 + torch.randn(20, 1)) 

# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
b = torch.zeros((1), requires_grad=True)
# 这里是迭代过程,为了看pytorch的反向传播计算梯度的细节,我先迭代两次
for iteration in range(2):

    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 反向传播
    loss.backward()
    
    # 这里看一下反向传播计算的梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

上面的代码比较简单,迭代了两次, 看一下计算的梯度结果:

w.grad: tensor([-74.6261])
b.grad: tensor([-12.5532])
w.grad: tensor([-122.9075])
b.grad: tensor([-20.9364])

然后我稍微加两行代码, 就是在反向传播上面,我手动添加梯度清零操作的代码,再感受一下结果:

torch.manual_seed(6)
lr = 0.01
result = []
# 创建训练数据
x = torch.rand(20, 1) * 10
#print(x)
y = 2 * x + (5 + torch.randn(20, 1)) 
#print(y)
# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
#print(w)
b = torch.zeros((1), requires_grad=True)
#print(b)
for iteration in range(2):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 由于pytorch反向传播中,梯度是累加的,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
     if iteration > 0: 
        w.grad.data.zero_()
        b.grad.data.zero_()
    
    # 反向传播
    loss.backward()
    
    # 看一下梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

w.grad: tensor([-74.6261])
b.grad: tensor([-12.5532])
w.grad: tensor([-48.2813])
b.grad: tensor([-8.3831])

从上面可以发现,pytorch在反向传播的时候,确实是默认累加上了上一次求的梯度, 如果不想让上一次的梯度影响自己本次梯度计算的话,需要手动的清零。

但是, 如果不进行手动清零的话,会有什么后果呢? 我在这次线性回归试验中,遇到的后果就是loss值反复的震荡不收敛。下面感受一下:

torch.manual_seed(6)
lr = 0.01
result = []
# 创建训练数据
x = torch.rand(20, 1) * 10
#print(x)
y = 2 * x + (5 + torch.randn(20, 1)) 
#print(y)
# 构建线性回归函数
w = torch.randn((1), requires_grad=True)
#print(w)
b = torch.zeros((1), requires_grad=True)
#print(b)

for iteration in range(1000):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 MSE loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
#     print("iteration {}: loss {}".format(iteration, loss))
    result.append(loss)
    
    # 由于pytorch反向传播中,梯度是累加的,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
    #if iteration > 0: 
    #    w.grad.data.zero_()
    #    b.grad.data.zero_()
  
    # 反向传播
    loss.backward()
 
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)
    
    if loss.data.numpy() < 1:
        break
   plt.plot(result)

上面的代码中,我没有进行手动清零,迭代1000次, 把每一次的loss放到来result中, 然后画出图像,感受一下结果:

没有进行手动清零

接下来,我把手动清零的注释打开,进行每次迭代之后的手动清零操作,得到的结果:

手动清零之后的操作

可以看到,这个才是理想中的反向传播求导,然后更新参数后得到的loss值的变化。

总结

这次主要是记录一下,pytorch在进行反向传播计算梯度的时候的累加机制到底是什么样子? 至于为什么采用这种机制,我也搜了一下,大部分给出的结果是这样子的:

但是如果不想累加的话,可以采用手动清零的方式,只需要在每次迭代时加上即可

w.grad.data.zero_()
b.grad.data.zero_()

另外, 在搜索资料的时候,在一篇博客上看到两个不错的线性回归时pytorch的计算图在这里借用一下:

前向传播
反向传播

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程