音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Python如何识别银行卡卡号?
日期:2021-09-08 14:40:42   来源:脚本之家

一、现有资源梳理

目前有一张卡号模板图片

在这里插入图片描述

N张测试银行卡图片,其一如下

在这里插入图片描述

操作环境 win10-64位
代码语言 Python 3.6

二、实现方案规划

对模板操作,将十个模板和对应的数字一一对应起来

图片中通过查找轮廓,然后绘制轮廓外界矩形的方式,将每一和数字分割出来,并和对应的数字相对应。以字典的形式保存
每一个模板都是这样的形式存储。

array([[ 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255],
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255, 255, 255], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 0, 0, 0], 
	 [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
	 [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
	 [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255]], dtype=uint8)

对测试图片操作,取得我们需要的,每个数字的像素 .

整个照片的干扰信息很多,很难直接就定位到卡号位置,需要经过一系列的变换。
定位到卡号位置后,如何将每个卡号给提取出来,进行模板匹配,识别其数字。

1.输入的图片为RGB格式,需要转换成GRAY格式,然后再将灰度形式的图片进行二值化处理。

2.对于二值化处理之后的图片进行Sobel滤波,将数字模糊,连接起来。

3.经过Sobel之后可能数字没有连接在一起,所以执行闭操作将相邻的数字连接起来,因为数字是横向的,所以闭操作的核设置为[1,1,1,1,1,1,1,1,1]

4.通过查找轮廓和轮廓外接矩形的方式定位到连续数字区域。

5.通过连续数字区域分割出每一个数字,然后将每个数字和模板进行匹配,匹配结果最高的就是最有可能的数字。

三、代码实现

工具包导入

from imutils import contours
import numpy as np
import argparse
import cv2
import myutils

路径和绘图函数及信用卡类型设定

# 模板图片
template = 'images/ocr_a_reference.png'
# 测试图片
image = 'images/credit_card_03.png'
# 指定信用卡类型
FIRST_NUMBER = {
	"3": "American Express",
	"4": "Visa",
	"5": "MasterCard",
	"6": "Discover Card"
}
# 绘图展示
def cv_show(name,img):
	cv2.imshow(name, img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()

模板处理

img = cv2.imread(template)
cv_show('img', img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show('ref', ref)
# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show('ref', ref)

# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓

ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours(img, refCnts, -1, (0, 0, 255), 3)
cv_show('img', img)
print(np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {}

# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
	# 计算外接矩形并且resize成合适大小
	(x, y, w, h) = cv2.boundingRect(c)
	roi = ref[y:y + h, x:x + w]
	roi = cv2.resize(roi, (57, 88))

	# 每一个数字对应每一个模板
	digits[i] = roi
# print(digits)

测试图片处理

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))

#读取输入图像,预处理
image = cv2.imread(image)
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show('gray',gray)

#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel) 
cv_show('tophat',tophat) 
# 
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
	ksize=-1)


gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")

print (np.array(gradX).shape)
cv_show('gradX',gradX)

#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel) 
cv_show('gradX',gradX)
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
	cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)

#再来一个闭操作

thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show('thresh',thresh)

# 计算轮廓

thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
	cv2.CHAIN_APPROX_SIMPLE)

cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3) 
cv_show('img',cur_img)
locs = []

# 遍历轮廓
for (i, c) in enumerate(cnts):
	# 计算矩形
	(x, y, w, h) = cv2.boundingRect(c)
	ar = w / float(h)

	# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
	if ar > 2.5 and ar < 4.0:

		if (w > 40 and w < 55) and (h > 10 and h < 20):
			#符合的留下来
			locs.append((x, y, w, h))

# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []

# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
	# initialize the list of group digits
	groupOutput = []

	# 根据坐标提取每一个组
	group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
	cv_show('group',group)
	# 预处理
	group = cv2.threshold(group, 0, 255,
		cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
	cv_show('group',group)
	# 计算每一组的轮廓
	group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
		cv2.CHAIN_APPROX_SIMPLE)
	digitCnts = contours.sort_contours(digitCnts,
		method="left-to-right")[0]

	# 计算每一组中的每一个数值
	for c in digitCnts:
		# 找到当前数值的轮廓,resize成合适的的大小
		(x, y, w, h) = cv2.boundingRect(c)
		roi = group[y:y + h, x:x + w]
		roi = cv2.resize(roi, (57, 88))
		cv_show('roi',roi)

		# 计算匹配得分
		scores = []

		# 在模板中计算每一个得分
		for (digit, digitROI) in digits.items():
			# 模板匹配
			result = cv2.matchTemplate(roi, digitROI,
				cv2.TM_CCOEFF)
			(_, score, _, _) = cv2.minMaxLoc(result)
			scores.append(score)

		# 得到最合适的数字
		groupOutput.append(str(np.argmax(scores)))

	# 画出来
	cv2.rectangle(image, (gX - 5, gY - 5),
		(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
	cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
		cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)

	# 得到结果
	output.extend(groupOutput)

# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv2.imshow("Image", image)
cv2.waitKey(0)
# (194, 300)
# Credit Card Type: MasterCard
# Credit Card #: 5412751234567890

所有代码连在一起就是完整的代码

到此这篇关于Python如何识别银行卡卡号?的文章就介绍到这了,更多相关Python识别卡号内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程