音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

opencv-python+yolov3实现目标检测
日期:2021-09-08 14:41:44   来源:脚本之家

因为最近的任务有用到目标检测,所以昨天晚上、今天上午搞了一下,快速地了解了目标检测这一任务,并且实现了使用opencv进行目标检测。

网上资料挺乱的,感觉在搜资源上浪费了我不少时间,所以我写这篇博客,把我这段时间了解到的东西整理起来,供有缘的读者参考学习。

目标检测概况

目标检测是?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

拿Faster R-CNN这个算法举例:输入一个batch(batch size也可以为1)的图片或者视频,网络直接的outputs是这样的:
[batchId, classId, confidence, left, top, right, bottom],batchId, classId, confidence, left, top, right, bottom都是标量。
batchId表示这一个batch中,这张图片的id(也即index),后四个标量即目标的位置信息:左上角像素点和右下角像素点的坐标。

目标检测算法?

按照历史脉络来谈:

手工特征提取算法,如VJ、HOG、DPM

R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;2)然后将这些区域传递到CNN算法进行分类;

R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。

但是,该模型仍然依赖于外部区域搜索算法。

faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

(1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。

(2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。

R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。

整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。yolov3支持80类物体的目标检测,完整列表[戳这里]: https://github.com/pjreddie/darknet/blob/master/data/coco.names

时间线:

yolov3模型简介

性能介绍

首先,套路,yolov3很强大(不强大我用它干啥呢)。速度上,它比 R-CNN 快 1000 倍,比 Fast R-CNN 快 100 倍。检测准确率上,它不是最准的:YOLOv3-608比 DSSD 更高,接近 FPN。但是它的速度不到后二者的1/3。

从下图也可以看出:

架构介绍

可以看出,他是一系列卷积、残差、上采样组成的。特点在于,它将预测分在三个尺度(Scale)进行(见图中三个彩色框),也在三个scale分别输出。

opencv-python实现

why opencv?

opencv( 3.4.2+版本)的dnn(Deep Neural Network-DNN)模块封装了Darknet框架,这个框架是

自己写的,它由封装了yolo算法。因为这么一层关系,我们可以使用opencv方便地使用yolo的各个版本,而且有数据(见下)证明OpenCV的DNN模块在 CPU的实现速度比使用 OpenML 的 Darknet 快9倍。

正文

我会先结合脚本片段讲解,再给出该脚本的完整代码,讲解。

引库

import numpy as np
import cv2 as cv
import os
import time

参数:

yolo_dir = '/home/hessesummer/github/NTS-Net-my/yolov3'  # YOLO文件路径
weightsPath = os.path.join(yolo_dir, 'yolov3.weights')  # 权重文件
configPath = os.path.join(yolo_dir, 'yolov3.cfg')  # 配置文件
labelsPath = os.path.join(yolo_dir, 'coco.names')  # label名称
imgPath = os.path.join(yolo_dir, 'test.jpg')  # 测试图像
CONFIDENCE = 0.5  # 过滤弱检测的最小概率
THRESHOLD = 0.4  # 非最大值抑制阈值

权重文件、配置文件、label名称的下载地址:

wget https://pjreddie.com/media/files/yolov3.weights
wget https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
wget https://github.com/pjreddie/darknet/blob/master/data/coco.names

简单来说:

过滤弱检测的最小概率:置信度小于这个值的输出都不要了;
非最大值抑制阈值:允许框框重叠的程度(多框框检测同一个物体),供下面的NMS算法使用,该算法会根据该值将有重叠的框框合并。值为0时,不允许框框重叠。默认值是0.3。

详细来说:

我没查。您自己感兴趣再了解吧。

重头戏1:

# 加载网络、配置权重
net = cv.dnn.readNetFromDarknet(configPath, weightsPath)  ## 利用下载的文件
# print("[INFO] loading YOLO from disk...") ## 可以打印下信息

# 加载图片、转为blob格式、送入网络输入层
img = cv.imread(imgPath)
blobImg = cv.dnn.blobFromImage(img, 1.0/255.0, (416, 416), None, True, False)  ## net需要的输入是blob格式的,用blobFromImage这个函数来转格式
net.setInput(blobImg)  ## 调用setInput函数将图片送入输入层

# 获取网络输出层信息(所有输出层的名字),设定并前向传播
outInfo = net.getUnconnectedOutLayersNames()  ## 前面的yolov3架构也讲了,yolo在每个scale都有输出,outInfo是每个scale的名字信息,供net.forward使用
# start = time.time()
layerOutputs = net.forward(outInfo)  # 得到各个输出层的、各个检测框等信息,是二维结构。
# end = time.time()
# print("[INFO] YOLO took {:.6f} seconds".format(end - start)) ## 可以打印下信息

layerOutputs是二维结构,第0维代表哪个输出层,第1维代表各个检测框。

其他的我都在注释里讲解了。

重头戏2:

# 拿到图片尺寸
(H, W) = img.shape[:2]

供下面使用:

# 过滤layerOutputs
# layerOutputs的第1维的元素内容: [center_x, center_y, width, height, objectness, N-class score data]
# 过滤后的结果放入:
boxes = [] # 所有边界框(各层结果放一起)
confidences = [] # 所有置信度
classIDs = [] # 所有分类ID

# # 1)过滤掉置信度低的框框
for out in layerOutputs:  # 各个输出层
    for detection in out:  # 各个框框
        # 拿到置信度
        scores = detection[5:]  # 各个类别的置信度
        classID = np.argmax(scores)  # 最高置信度的id即为分类id
        confidence = scores[classID]  # 拿到置信度

        # 根据置信度筛查
        if confidence > CONFIDENCE:
            box = detection[0:4] * np.array([W, H, W, H])  # 将边界框放会图片尺寸
            (centerX, centerY, width, height) = box.astype("int")
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

# # 2)应用非最大值抑制(non-maxima suppression,nms)进一步筛掉
idxs = cv.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD) # boxes中,保留的box的索引index存入idxs

这里的NMS算法就是前面提到的NMS算法。

应用检测结果,这里是画出框框。

# 得到labels列表
with open(labelsPath, 'rt') as f:
    labels = f.read().rstrip('\n').split('\n')

供下面使用:

# 应用检测结果
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")  # 框框显示颜色,每一类有不同的颜色,每种颜色都是由RGB三个值组成的,所以size为(len(labels), 3)
if len(idxs) > 0:
    for i in idxs.flatten(): # indxs是二维的,第0维是输出层,所以这里把它展平成1维
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])

        color = [int(c) for c in COLORS[classIDs[i]]]
        cv.rectangle(img, (x, y), (x+w, y+h), color, 2)  # 线条粗细为2px
        text = "{}: {:.4f}".format(labels[classIDs[i]], confidences[i])
        cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)  # cv.FONT_HERSHEY_SIMPLEX字体风格、0.5字体大小、粗细2px
cv.imshow('目标检测结果', img)
cv.waitKey(0)

第一部分讲解结束,下面放完整代码:

import numpy as np
import cv2 as cv
import os
import time

yolo_dir = '/home/hessesummer/github/NTS-Net-my/yolov3'  # YOLO文件路径
weightsPath = os.path.join(yolo_dir, 'yolov3.weights')  # 权重文件
configPath = os.path.join(yolo_dir, 'yolov3.cfg')  # 配置文件
labelsPath = os.path.join(yolo_dir, 'coco.names')  # label名称
imgPath = os.path.join(yolo_dir, 'test.jpg')  # 测试图像
CONFIDENCE = 0.5  # 过滤弱检测的最小概率
THRESHOLD = 0.4  # 非最大值抑制阈值

# 加载网络、配置权重
net = cv.dnn.readNetFromDarknet(configPath, weightsPath)  # #  利用下载的文件
print("[INFO] loading YOLO from disk...")  # # 可以打印下信息

# 加载图片、转为blob格式、送入网络输入层
img = cv.imread(imgPath)
blobImg = cv.dnn.blobFromImage(img, 1.0/255.0, (416, 416), None, True, False)   # # net需要的输入是blob格式的,用blobFromImage这个函数来转格式
net.setInput(blobImg)  # # 调用setInput函数将图片送入输入层

# 获取网络输出层信息(所有输出层的名字),设定并前向传播
outInfo = net.getUnconnectedOutLayersNames()  # # 前面的yolov3架构也讲了,yolo在每个scale都有输出,outInfo是每个scale的名字信息,供net.forward使用
start = time.time()
layerOutputs = net.forward(outInfo)  # 得到各个输出层的、各个检测框等信息,是二维结构。
end = time.time()
print("[INFO] YOLO took {:.6f} seconds".format(end - start))  # # 可以打印下信息

# 拿到图片尺寸
(H, W) = img.shape[:2]
# 过滤layerOutputs
# layerOutputs的第1维的元素内容: [center_x, center_y, width, height, objectness, N-class score data]
# 过滤后的结果放入:
boxes = [] # 所有边界框(各层结果放一起)
confidences = [] # 所有置信度
classIDs = [] # 所有分类ID

# # 1)过滤掉置信度低的框框
for out in layerOutputs:  # 各个输出层
    for detection in out:  # 各个框框
        # 拿到置信度
        scores = detection[5:]  # 各个类别的置信度
        classID = np.argmax(scores)  # 最高置信度的id即为分类id
        confidence = scores[classID]  # 拿到置信度

        # 根据置信度筛查
        if confidence > CONFIDENCE:
            box = detection[0:4] * np.array([W, H, W, H])  # 将边界框放会图片尺寸
            (centerX, centerY, width, height) = box.astype("int")
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

# # 2)应用非最大值抑制(non-maxima suppression,nms)进一步筛掉
idxs = cv.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD) # boxes中,保留的box的索引index存入idxs
# 得到labels列表
with open(labelsPath, 'rt') as f:
    labels = f.read().rstrip('\n').split('\n')
# 应用检测结果
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")  # 框框显示颜色,每一类有不同的颜色,每种颜色都是由RGB三个值组成的,所以size为(len(labels), 3)
if len(idxs) > 0:
    for i in idxs.flatten():  # indxs是二维的,第0维是输出层,所以这里把它展平成1维
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])

        color = [int(c) for c in COLORS[classIDs[i]]]
        cv.rectangle(img, (x, y), (x+w, y+h), color, 2)  # 线条粗细为2px
        text = "{}: {:.4f}".format(labels[classIDs[i]], confidences[i])
        cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)  # cv.FONT_HERSHEY_SIMPLEX字体风格、0.5字体大小、粗细2px
cv.imshow('detected image', img)
cv.waitKey(0)

结果:

到此这篇关于opencv-python+yolov3实现目标检测的文章就介绍到这了,更多相关opencv yolov3目标检测内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程