音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Python实现最短路径问题的方法
日期:2021-09-08 14:43:32   来源:脚本之家

一、创建图

在开始之前,我们先创建一个图,使用邻接矩阵表示有向网:

class Graph(object):
    """
    以邻接矩阵为存储结构创建有向网
    """
    def __init__(self, kind):
        # 图的类型: 无向图, 有向图, 无向网, 有向网
        # kind: Undigraph, Digraph, Undinetwork, Dinetwork,
        self.kind = kind
        # 顶点表
        self.vertexs = []
        # 边表, 即邻接矩阵, 是个二维的
        self.arcs = []
        # 当前顶点数
        self.vexnum = 0
        # 当前边(弧)数
        self.arcnum = 0

    def CreateGraph(self, vertex_list, edge_list):
        """
        创建图
        :param vertex_list: 顶点列表
        :param edge_list: 边列表
        :return:
        """
        self.vexnum = len(vertex_list)
        self.arcnum = len(edge_list)
        for vertex in vertex_list:
            vertex = Vertex(vertex)
            # 顶点列表
            self.vertexs.append(vertex)
            # 邻接矩阵, 初始化为无穷
            self.arcs.append([float('inf')] * self.vexnum)
        for edge in edge_list:
            ivertex = self.LocateVertex(edge[0])
            jvertex = self.LocateVertex(edge[1])
            weight = edge[2]
            self.InsertArc(ivertex, jvertex, weight)

    def LocateVertex(self, vertex):
        """
        定位顶点在邻接表中的位置
        :param vertex:
        :return:
        """
        index = 0
        while index < self.vexnum:
            if self.vertexs[index].data == vertex:
                return index
            else:
                index += 1

    def InsertArc(self, ivertex, jvertex, weight):
        """
        创建邻接矩阵
        :param ivertex:
        :param jvertex:
        :param weight:
        :return:
        """
        if self.kind == 'Dinetwork':
            self.arcs[ivertex][jvertex] = weight

  有关邻接矩阵中顶点结点Vertex()的定义可以参考这篇博客,这里就不在贴出相应的代码了。

二、问题来源

在这里插入图片描述  

假如我从城市 A A A出发坐火车去其他城市旅游,那么如何规划路线使所花费的车票钱最少呢?若将上述图中的城市看成有向网中的顶点,并将两城市之间所需要的车票钱看做对应弧的权值,那么这一问题的本质就是求两个顶点之间权值最小的路径,简称最短路径 ( S h o r t e s t (Shortest (Shortest P a t h ) Path) Path)。

三、Dijkstra算法

D i j k s t r a Dijkstra Dijkstra算法,中文名叫迪杰斯特拉算法,它常用于求解源点到其余顶点的最短路径。

假设 G = { V , { A } } G=\{V, \{A\}\} G={V,{A}}是含有 n n n个顶点的有向网,以该图中的顶点 v v v为源点,使用 D i j k s t r a

Dijkstra Dijkstra算法求顶点 v v v到图中其余各顶点的最短路径的基本思路如下:
(1) 使用集合 S S S记录已求得最短路径的终点,初始时 S = { v } S=\{v\} S={v};
(2) 选择一条长度最短的路径,该路径的终点 w ∈ V − S w\in V-S w∈V−S,将 w w w并入 S S S,并将该最短路径的长度记为 D w D_w Dw​;
(3) 对于 V − S V-S V−S中任一顶点 s s s,将源点到顶点 s s s的最短路径长度记为 D s D_s Ds​,并将顶点 w w w到顶点 s s s的弧的权值记为 D w s D_{ws} Dws​,若 D w + D w s < D s D_w+D_{ws}<D_s Dw​+Dws​<Ds​,则将源点到顶点 s s s的最短路径的长度修改为 D w + D w s D_w+D_{ws} Dw​+Dws​;
(4) 重复执行上述操作,直到 S = V S=V S=V。

D i j k s t r a Dijkstra Dijkstra算法有些 P r i m Prim Prim算法的影子,这里使用一个辅助列表Dist,用来存储源点到每一个终点的最短路径长度,列表Path来存储每一条最短路径中倒数第二个顶点的下标(弧尾下标),除此之外还需要一个列表flag来记录顶点是否已求得最短路径。下面结合着 D i j k s t r a Dijkstra Dijkstra算法来分析一下上面的那个有向网:

在这里插入图片描述

(1) 这里要做的就是更新列表Dist和列表Path,假如以顶点 A A A为起始点,先将它加入 S S S中,然后寻找以顶点 A A A为弧尾的最短路径,这里找到了顶点 B B B,然后继续找下一个顶点。这个时候就要做一个判断了,即 D w + D w s < D s D_w+D_{ws}<D_s Dw​+Dws​<Ds​是否成立,这里的顶点 s s s有两种选择,要么是顶点 C C C,要么是顶点 D D D,因为这两个顶点都是以顶点 w w w(即顶点 B B B)为弧尾,按照顺序,这个时候先选择了顶点 C C C,经判断: D A B + D B C < D A C D_{AB}+D_{BC}<D_{AC} DAB​+DBC​<DAC​(即 4 + 3 = 7 < 8 4+3=7<8 4+3=7<8)成立,然后更新源点到顶点 s s s(即顶点 C C C)的距离为7。这个时候顶点 s s s又选择了顶点 D D D,经判断: D A B + D B D < D A D D_{AB}+D_{BD}<D_{AD} DAB​+DBD​<DAD​(即 4 + 8 = 12 < ∞ 4+8=12<\infty 4+8=12<∞)成立,然后更新源点到顶点 s s s(即顶点 D D D)的距离为12。

(2) 然后寻找以顶点 C C C为弧尾的最短路径,这里找到了顶点 E E E,然后做一个路径长度判断,经判断: D A C + D C E < D A E D_{AC}+D_{CE}<D_{AE} DAC​+DCE​<DAE​(即 7 + 1 = 8 < ∞ 7+1=8<\infty 7+1=8<∞)成立,然后更新源点到顶点 s s s(即顶点 E E E)的距离为8,然后又找到了顶点 F F F,然后做一个路径长度判断,经判断: D A C + D C F < D A F D_{AC}+D_{CF}<D_{AF} DAC​+DCF​<DAF​(即 7 + 6 = 13 < ∞ 7+6=13<\infty 7+6=13<∞)成立,然后更新源点到顶点 s s s(即顶点 F F F)的距离为13。

(3) 直至计算出所有源点到其余顶点的距离。

D i j k s t r a Dijkstra Dijkstra算法代码实现如下:

 def Dijkstra(self, Vertex):
        """
        Dijkstra算法, 计算源点Vertex到其余各顶点的最短距离
        :param Vertex:
        :return:
        """
        # 源点到每一个终点的最短路径长度
        Dist = []
        # 每一条最短路径中倒数第二个顶点的下标(弧尾下标)
        Path = []
        # 记录顶点是否已求得最短路径
        flag = [False] * self.vexnum

        index = 0
        while index < self.vexnum:
            Dist.append(self.arcs[Vertex][index])
            if self.arcs[Vertex][index] < float('inf'):
                # 存放弧尾下标
                Path.append(Vertex)
            else:
                Path.append(-1)
            index += 1

        # 以顶点Vertex为源点
        Dist[Vertex] = 0
        Path[Vertex] = 0
        flag[Vertex] = True

        index = 1
        while index < self.vexnum:
            minDist = float('inf')
            # 寻找源点到下一个顶点wVertex的最短路径
            for i in range(self.vexnum):
                if not flag[i] and Dist[i] < minDist:
                    wVertex = i
                    minDist = Dist[i]
            flag[wVertex] = True
            sVertex = 0
            minDist = float('inf')
            # 更新源点到终点sVertex的最短路径
            while sVertex < self.vexnum:
                if not flag[sVertex]:
                    if self.arcs[wVertex][sVertex] < minDist and \
                            Dist[wVertex] + self.arcs[wVertex][sVertex] < Dist[sVertex]:
                        # 距离更新
                        Dist[sVertex] = Dist[wVertex] + self.arcs[wVertex][sVertex]
                        Path[sVertex] = wVertex
                sVertex += 1
            index += 1
        # 输出信息
        self.ShortestPathDijkstra(Vertex, Dist, Path)

    def ShortestPathDijkstra(self, Vertex, Dist, Path):
        """
        输出从顶点Vertex到其余顶点的最短路径
        :param Vertex:
        :param Dist:
        :param Path:
        :return:
        """
        tPath = []
        index = 0
        while index < self.vexnum:
            # index是路径终点
            if index != Vertex:
                print('顶点' + self.vertexs[Vertex].data + '到达顶点' + self.vertexs[index].data + '的路径及长度为:')
                # 从源点Vertex到终点index中间有可能经过了多个顶点
                tPath.append(index)
                former = Path[index]
                while former != Vertex:
                    tPath.append(former)
                    former = Path[former]
                tPath.append(Vertex)
                while len(tPath) > 0:
                    print(self.vertexs[tPath.pop()].data, end='')
                print('\t\t%d' % Dist[index])
            index += 1

四、Floyd算法

F l o y d Floyd Floyd算法,中文名叫弗洛伊德算法,它常用于求解求解每一对顶点之间的最短路径。

假设 G = { V , { A } } G=\{V, \{A\}\} G={V,{A}}是含有 n n n个顶点的有向网,使用 F l o y d Floyd Floyd算法求图中每一对顶点间的最短路径的基本思路如下:

(1) 对于图 G G G中任意两个顶点 v v v和 w w w,将顶点 v v v和顶点 w w w的最短路径的长度记为 D v w D_{vw} Dvw​,并依次判断其余各顶点是否为这两个顶点间最短路径上的顶点。对于除了顶点 v v v和顶点顶点 w w w的任意顶点 u u u,将顶点 v v v和顶点 u u u的最短路径的长度记为 D v u D_{vu} Dvu​,并顶点 u u u和顶点 w w w的最短路径的长度记为 D u w D_{uw} Duw​,若 D v u + D u w < D v w D_{vu}+D_{uw}<D_{vw} Dvu​+Duw​<Dvw​,则将 D v w D_{vw} Dvw​的值修改为 D v u + D u w D_{vu}+D_{uw} Dvu​+Duw​,即顶点 v v v和顶点 w w w的最短路径经过顶点 u u u;

(2) 重复上述过程,直至图中每一顶点间的最短路径都被求出。

当然了,也可以对每个顶点使用 D i j k s t r a Dijkstra Dijkstra算法来求得每对顶点的最短路径。对于 F l o y d Floyd Floyd算法,这里使用一个辅助二维数组Dist,用来存储源点到每一对顶点间的最短路径长度,二维数组Path来存储每一条最短路径中倒数第二个顶点的下标(弧尾下标)。下面结合着 F l o y d Floyd Floyd算法来分析一下最上面的那个有向网(由于顶点对较多,这里选择 A − I A-I A−I的最短路径进行说明):

在这里插入图片描述  

 F l o y d Floyd Floyd算法代码实现如下:

 def Floyd(self):
        """
        Floyd算法, 计算每一对顶点间的最短距离
        :return:
        """
        Dist = [[0 for _ in range(self.vexnum)] for _ in range(self.vexnum)]
        Path = [[0 for _ in range(self.vexnum)] for _ in range(self.vexnum)]
        for row in range(self.vexnum):
            for column in range(self.vexnum):
                Dist[row][column] = self.arcs[row][column]
                if self.arcs[row][column] < float('inf') and row != column:
                    Path[row][column] = row
                else:
                    Path[row][column] = -1
        
        # 判断图中任意两个顶点的最短路径是否经过了结点uVertex
        for uVertex in range(self.vexnum):
            for vVertex in range(self.vexnum):
                for wVertex in range(self.vexnum):
                    if vVertex != wVertex and \
                            Dist[vVertex][uVertex] + Dist[uVertex][wVertex] < Dist[vVertex][wVertex]:
                        Dist[vVertex][wVertex] = Dist[vVertex][uVertex] + Dist[uVertex][wVertex]
                        Path[vVertex][wVertex] = Path[uVertex][wVertex]
        # 输出每一组顶点间的最短路径
        self.ShortestPathFloyd(Dist, Path)

    def ShortestPathFloyd(self, Dist, Path):
        """
        输出每一组顶点间的最短路径
        :param Dist:
        :param Path:
        :return:
        """
        tPath = []
        for start in range(self.vexnum):
            for end in range(self.vexnum):
                if start != end and Dist[start][end] < float('inf'):
                    print('从顶点' + self.vertexs[start].data + '到顶点' + self.vertexs[end].data +
                          '的路径及长度为:')
                    tVertex = Path[start][end]
                    tPath.append(end)
                    while tVertex != -1 and tVertex != start:
                        tPath.append(tVertex)
                        tVertex = Path[start][tVertex]
                    tPath.append(start)
                    while len(tPath) > 0:
                        print(self.vertexs[tPath.pop()].data, end='')
                    print('\t\t%d' % Dist[start][end])

五、代码测试

测试代码如下:

if __name__ == '__main__':
    graph = Graph(kind='Dinetwork')
    graph.CreateGraph(vertex_list=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
                      edge_list=[('A', 'B', 4), ('A', 'C', 8), ('B', 'C', 3), ('B', 'D', 8),
                                 ('C', 'E', 1), ('C', 'F', 6), ('D', 'G', 7), ('D', 'H', 4),
                                 ('E', 'D', 2), ('E', 'F', 6), ('F', 'H', 2), ('G', 'I', 9),
                                 ('H', 'G', 14), ('H', 'I', 10)])

    print('{:*^30}'.format('Dijkstra算法'))
    # 起始位置的index为0
    graph.Dijkstra(0)

    print('{:*^30}'.format('Floyd算法'))
    graph.Floyd()

测试结果如下:

在这里插入图片描述
在这里插入图片描述

这里只看了一条,就是从顶点 A A A到顶点 I I I的路径,可以看到 D i j k s t r a Dijkstra Dijkstra算法和 F l o y d Floyd Floyd算法求得的最短路径都是24。

到此这篇关于Python实现最短路径问题的方法的文章就介绍到这了,更多相关Python最短路径内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程