音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Python预测分词的实现
日期:2021-09-08 14:45:25   来源:脚本之家

前言

在机器学习中,我们有了训练集的话,就开始预测。预测是指利用模型对句子进行推断的过程。在中文分词任务中也就是利用模型推断分词序列,同时也叫解码。

在HanLP库中,二元语法的解码由ViterbiSegment分词器提供。本篇将详细介绍ViterbiSegment的使用方式

加载模型

在前篇博文中,我们已经得到了训练的一元,二元语法模型。后续的处理肯定会基于这几个文件来处理。所以,我们首先要做的就是加载这些模型到程序中:

if __name__ == "__main__":
    MODEL_PATH = "123"
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    CoreDictionary = SafeJClass("com.hankcs.hanlp.dictionary.CoreDictionary")
    CoreBiGramTableDictionary = SafeJClass('com.hankcs.hanlp.dictionary.CoreBiGramTableDictionary')
    print(CoreDictionary.getTermFrequency("秦机"))
    print(CoreBiGramTableDictionary.getBiFrequency("秦机","的"))

运行之后,效果如下:

频次

这里我们使用CoreDictionary.getTermFrequency()方法获取”秦机“的频次。使用CoreBiGramTableDictionary.getBiFrequency()方法获取“秦机 的”的二元语法频次。

构建词网

在前文中我们介绍了符号“末##末“,代表句子结尾,”始##始“代表句子开头。而词网指的是句子中所有一元语法构成的网状结构。比如MSR词典中的“秦机和科技”这个句子,是给定的一元词典。我们将句子中所有单词找出来。得到如下词网:

[始##始]
[秦机]
[]
[和,和科]
[科技]
[技]
[末##末]

对应的此图如下所示:

科技

当然,这里博主只是举例说明词网的概念,“和科”并不是一个单词。

下面,我们来通过方法构建词网。具体代码如下:

def build_wordnet(sent, trie):
    JString = JClass('java.lang.String')
    Vertex = JClass('com.hankcs.hanlp.seg.common.Vertex')
    WordNet = JClass('com.hankcs.hanlp.seg.common.WordNet')
    searcher = trie.getSearcher(JString(sent), 0)
    wordnet = WordNet(sent)
    while searcher.next():
        wordnet.add(searcher.begin + 1,
                    Vertex(sent[searcher.begin:searcher.begin + searcher.length], searcher.value, searcher.index))
    # 原子分词,保证图连通
    vertexes = wordnet.getVertexes()
    i = 0
    while i < len(vertexes):
        if len(vertexes[i]) == 0:  # 空白行
            j = i + 1
            for j in range(i + 1, len(vertexes) - 1):  # 寻找第一个非空行 j
                if len(vertexes[j]):
                    break
            wordnet.add(i, Vertex.newPunctuationInstance(sent[i - 1: j - 1]))  # 填充[i, j)之间的空白行
            i = j
        else:
            i += len(vertexes[i][-1].realWord)

    return wordnet


if __name__ == "__main__":
    MODEL_PATH = "123"
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    CoreDictionary = SafeJClass("com.hankcs.hanlp.dictionary.CoreDictionary")
    CoreBiGramTableDictionary = SafeJClass('com.hankcs.hanlp.dictionary.CoreBiGramTableDictionary')
    print(build_wordnet("秦机和科技", CoreDictionary.trie))

运行之后,我们会得到与上图归纳差不多的内容:

效果

维特比算法

如果现在我们赋予上述词图每条边以二元语法的概率作为距离,那么如何求解词图上的最短路径就是一个关键问题。

假设文本长度为n,则一共有2(n-1次方)种切分方式,因为每2个字符间都有2种选择:切或者不切,时间复杂度就为O(2(n-1次方))。显然不切实际,这里我们考虑使用维特比算法。

维特比算法原理:它分为前向和后向两个步骤。

  • 前向:由起点出发从前往后遍历节点,更新从起点到该节点的最下花费以及前驱指针
  • 后向:由终点出发从后往前回溯前驱指针,取得最短路径

维特比算法用python代码的实现如下:

def viterbi(wordnet):
    nodes = wordnet.getVertexes()
    # 前向遍历
    for i in range(0, len(nodes) - 1):
        for node in nodes[i]:
            for to in nodes[i + len(node.realWord)]:
                # 根据距离公式计算节点距离,并维护最短路径上的前驱指针from
                to.updateFrom(node)
    # 后向回溯
    # 最短路径
    path = []
    # 从终点回溯
    f = nodes[len(nodes) - 1].getFirst()
    while f:
        path.insert(0, f)
        # 按前驱指针from回溯
        f = f.getFrom()
    return [v.realWord for v in path]

实战

现在我们来做个测试,我们在msr_test_gold.utf8上训练模型,为秦机和科技常见词图,最后运行维特比算法。详细代码如下所示:

if __name__ == "__main__":
    MODEL_PATH = "123"
    corpus_path = r"E:\ProgramData\Anaconda3\Lib\site-packages\pyhanlp\static\data\test\icwb2-data\gold\msr_test_gold.utf8"
    train_model(corpus_path, MODEL_PATH)
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    CoreDictionary = SafeJClass("com.hankcs.hanlp.dictionary.CoreDictionary")
    CoreBiGramTableDictionary = SafeJClass('com.hankcs.hanlp.dictionary.CoreBiGramTableDictionary')
    ViterbiSegment = JClass('com.hankcs.hanlp.seg.Viterbi.ViterbiSegment')
    MODEL_PATH = "123"
    HanLP.Config.CoreDictionaryPath = MODEL_PATH + ".txt"
    HanLP.Config.BiGramDictionaryPath = MODEL_PATH + ".ngram.txt"
    sent = "秦机和科技"
    wordnet = build_wordnet(sent, CoreDictionary.trie)
    print(viterbi(wordnet))

效果

有的人可能有疑问,因为二元模型里,本身就存在秦机 和
科技这个样本。这么做不是多此一举吗?那好,我们替换sent的文本内容为“北京和广州”,这个样本可不在模型中。运行之后,效果如下:

效果如下

我们发现依然能正确的分词为[北京 和 广州],这就是二元语法模型的泛化能力。至此我们走通了语料标注,训练模型,预测分词结果的完整步骤。

到此这篇关于Python预测分词的实现的文章就介绍到这了,更多相关Python预测分词内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程