音效素材网提供各类素材,打造精品素材网站!

站内导航 站长工具 投稿中心 手机访问

音效素材

Pandas实现Dataframe的合并
日期:2021-09-08 14:42:59   来源:脚本之家

简介

Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析。本文将会详细讲解如何使用Pandas来合并Series和Dataframe。

使用concat

concat是最常用的合并DF的方法,先看下concat的定义:

pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None,
          levels=None, names=None, verify_integrity=False, copy=True)

看一下我们经常会用到的几个参数:

objs是Series或者Series的序列或者映射。

axis指定连接的轴。

join : {‘inner', ‘outer'}, 连接方式,怎么处理其他轴的index,outer表示合并,inner表示交集。

ignore_index: 忽略原本的index值,使用0,1,… n-1来代替。

copy:是否进行拷贝。

keys:指定最外层的多层次结构的index。

我们先定义几个DF,然后看一下怎么使用concat把这几个DF连接起来:

In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
   ...:                     'B': ['B0', 'B1', 'B2', 'B3'],
   ...:                     'C': ['C0', 'C1', 'C2', 'C3'],
   ...:                     'D': ['D0', 'D1', 'D2', 'D3']},
   ...:                    index=[0, 1, 2, 3])
   ...: 

In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
   ...:                     'B': ['B4', 'B5', 'B6', 'B7'],
   ...:                     'C': ['C4', 'C5', 'C6', 'C7'],
   ...:                     'D': ['D4', 'D5', 'D6', 'D7']},
   ...:                    index=[4, 5, 6, 7])
   ...: 

In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
   ...:                     'B': ['B8', 'B9', 'B10', 'B11'],
   ...:                     'C': ['C8', 'C9', 'C10', 'C11'],
   ...:                     'D': ['D8', 'D9', 'D10', 'D11']},
   ...:                    index=[8, 9, 10, 11])
   ...: 

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)

df1,df2,df3定义了同样的列名和不同的index,然后将他们放在frames中构成了一个DF的list,将其作为参数传入concat就可以进行DF的合并。

举个多层级的例子:

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])

使用keys可以指定frames中不同frames的key。

使用的时候,我们可以通过选择外部的key来返回特定的frame:

In [7]: result.loc['y']
Out[7]: 
    A   B   C   D
4  A4  B4  C4  D4
5  A5  B5  C5  D5
6  A6  B6  C6  D6
7  A7  B7  C7  D7

上面的例子连接的轴默认是0,也就是按行来进行连接,下面我们来看一个例子按列来进行连接,如果要按列来连接,可以指定axis=1:

In [8]: df4 = pd.DataFrame({'B': ['B2', 'B3', 'B6', 'B7'],
   ...:                     'D': ['D2', 'D3', 'D6', 'D7'],
   ...:                     'F': ['F2', 'F3', 'F6', 'F7']},
   ...:                    index=[2, 3, 6, 7])
   ...: 

In [9]: result = pd.concat([df1, df4], axis=1, sort=False)

默认的 join='outer',合并之后index不存在的地方会补全为NaN。

下面看一个join='inner'的情况:

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')

join='inner' 只会选择index相同的进行展示。

如果合并之后,我们只想保存原来frame的index相关的数据,那么可以使用reindex:

In [11]: result = pd.concat([df1, df4], axis=1).reindex(df1.index)

或者这样:

In [12]: pd.concat([df1, df4.reindex(df1.index)], axis=1)
Out[12]: 
    A   B   C   D    B    D    F
0  A0  B0  C0  D0  NaN  NaN  NaN
1  A1  B1  C1  D1  NaN  NaN  NaN
2  A2  B2  C2  D2   B2   D2   F2
3  A3  B3  C3  D3   B3   D3   F3

看下结果:

可以合并DF和Series:

In [18]: s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')

In [19]: result = pd.concat([df1, s1], axis=1)

如果是多个Series,使用concat可以指定列名:

In [23]: s3 = pd.Series([0, 1, 2, 3], name='foo')

In [24]: s4 = pd.Series([0, 1, 2, 3])

In [25]: s5 = pd.Series([0, 1, 4, 5])
In [27]: pd.concat([s3, s4, s5], axis=1, keys=['red', 'blue', 'yellow'])
Out[27]: 
   red  blue  yellow
0    0     0       0
1    1     1       1
2    2     2       4
3    3     3       5

使用append

append可以看做是concat的简化版本,它沿着axis=0 进行concat:

In [13]: result = df1.append(df2)

如果append的两个 DF的列是不一样的会自动补全NaN:

In [14]: result = df1.append(df4, sort=False)

如果设置ignore_index=True,可以忽略原来的index,并重写分配index:

In [17]: result = df1.append(df4, ignore_index=True, sort=False)

向DF append一个Series:

In [35]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

In [36]: result = df1.append(s2, ignore_index=True)

使用merge

和DF最类似的就是数据库的表格,可以使用merge来进行类似数据库操作的DF合并操作。

先看下merge的定义:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False,
         validate=None)

Left, right是要合并的两个DF 或者 Series。

on代表的是join的列或者index名。

left_on:左连接

right_on:右连接

left_index: 连接之后,选择使用左边的index或者column。

right_index:连接之后,选择使用右边的index或者column。

how:连接的方式,'left', 'right', 'outer', 'inner'. 默认 inner.

sort: 是否排序。

suffixes: 处理重复的列。

copy: 是否拷贝数据

先看一个简单merge的例子:

In [39]: left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
   ....:                      'A': ['A0', 'A1', 'A2', 'A3'],
   ....:                      'B': ['B0', 'B1', 'B2', 'B3']})
   ....: 

In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
   ....:                       'C': ['C0', 'C1', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D1', 'D2', 'D3']})
   ....: 

In [41]: result = pd.merge(left, right, on='key')

上面两个DF通过key来进行连接。

再看一个多个key连接的例子:

In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
   ....:                      'key2': ['K0', 'K1', 'K0', 'K1'],
   ....:                      'A': ['A0', 'A1', 'A2', 'A3'],
   ....:                      'B': ['B0', 'B1', 'B2', 'B3']})
   ....: 

In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
   ....:                       'key2': ['K0', 'K0', 'K0', 'K0'],
   ....:                       'C': ['C0', 'C1', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D1', 'D2', 'D3']})
   ....: 

In [44]: result = pd.merge(left, right, on=['key1', 'key2'])

How 可以指定merge方式,和数据库一样,可以指定是内连接,外连接等:

合并方法 SQL 方法
left LEFT OUTER JOIN
right RIGHT OUTER JOIN
outer FULL OUTER JOIN
inner INNER JOIN

In [45]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])

指定indicator=True ,可以表示具体行的连接方式:

In [60]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left': ['a', 'b']})

In [61]: df2 = pd.DataFrame({'col1': [1, 2, 2], 'col_right': [2, 2, 2]})

In [62]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[62]: 
   col1 col_left  col_right      _merge
0     0        a        NaN   left_only
1     1        b        2.0        both
2     2      NaN        2.0  right_only
3     2      NaN        2.0  right_only

如果传入字符串给indicator,会重命名indicator这一列的名字:

In [63]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[63]: 
   col1 col_left  col_right indicator_column
0     0        a        NaN        left_only
1     1        b        2.0             both
2     2      NaN        2.0       right_only
3     2      NaN        2.0       right_only

多个index进行合并:

In [112]: leftindex = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
   .....:                                        ('K1', 'X2')],
   .....:                                       names=['key', 'X'])
   .....: 

In [113]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   .....:                      'B': ['B0', 'B1', 'B2']},
   .....:                     index=leftindex)
   .....: 

In [114]: rightindex = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
   .....:                                         ('K2', 'Y2'), ('K2', 'Y3')],
   .....:                                        names=['key', 'Y'])
   .....: 

In [115]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
   .....:                       'D': ['D0', 'D1', 'D2', 'D3']},
   .....:                      index=rightindex)
   .....: 

In [116]: result = pd.merge(left.reset_index(), right.reset_index(),
   .....:                   on=['key'], how='inner').set_index(['key', 'X', 'Y'])

支持多个列的合并:

In [117]: left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1')

In [118]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
   .....:                      'B': ['B0', 'B1', 'B2', 'B3'],
   .....:                      'key2': ['K0', 'K1', 'K0', 'K1']},
   .....:                     index=left_index)
   .....: 

In [119]: right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1')

In [120]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
   .....:                       'D': ['D0', 'D1', 'D2', 'D3'],
   .....:                       'key2': ['K0', 'K0', 'K0', 'K1']},
   .....:                      index=right_index)
   .....: 

In [121]: result = left.merge(right, on=['key1', 'key2'])

使用join

join将两个不同index的DF合并成一个。可以看做是merge的简写。

In [84]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   ....:                      'B': ['B0', 'B1', 'B2']},
   ....:                     index=['K0', 'K1', 'K2'])
   ....: 

In [85]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D2', 'D3']},
   ....:                      index=['K0', 'K2', 'K3'])
   ....: 

In [86]: result = left.join(right)

可以指定how来指定连接方式:

In [87]: result = left.join(right, how='outer')

默认join是按index来进行连接。

还可以按照列来进行连接:

In [91]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
   ....:                      'B': ['B0', 'B1', 'B2', 'B3'],
   ....:                      'key': ['K0', 'K1', 'K0', 'K1']})
   ....: 

In [92]: right = pd.DataFrame({'C': ['C0', 'C1'],
   ....:                       'D': ['D0', 'D1']},
   ....:                      index=['K0', 'K1'])
   ....: 

In [93]: result = left.join(right, on='key')

单个index和多个index进行join:

In [100]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   .....:                      'B': ['B0', 'B1', 'B2']},
   .....:                      index=pd.Index(['K0', 'K1', 'K2'], name='key'))
   .....: 

In [101]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
   .....:                                   ('K2', 'Y2'), ('K2', 'Y3')],
   .....:                                    names=['key', 'Y'])
   .....: 

In [102]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
   .....:                       'D': ['D0', 'D1', 'D2', 'D3']},
   .....:                       index=index)
   .....: 

In [103]: result = left.join(right, how='inner')

列名重复的情况:

In [122]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})

In [123]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

In [124]: result = pd.merge(left, right, on='k')

可以自定义重复列名的命名规则:

In [125]: result = pd.merge(left, right, on='k', suffixes=('_l', '_r'))

覆盖数据

有时候我们需要使用DF2的数据来填充DF1的数据,这时候可以使用combine_first:

In [131]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],
   .....:                    [np.nan, 7., np.nan]])
   .....: 

In [132]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
   .....:                    index=[1, 2])
   .....: 
In [133]: result = df1.combine_first(df2)

到此这篇关于Pandas实现Dataframe的合并的文章就介绍到这了,更多相关Pandas Dataframe合并内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

    您感兴趣的教程

    在docker中安装mysql详解

    本篇文章主要介绍了在docker中安装mysql详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编...

    详解 安装 docker mysql

    win10中文输入法仅在桌面显示怎么办?

    win10中文输入法仅在桌面显示怎么办?

    win10系统使用搜狗,QQ输入法只有在显示桌面的时候才出来,在使用其他程序输入框里面却只能输入字母数字,win10中...

    win10 中文输入法

    一分钟掌握linux系统目录结构

    这篇文章主要介绍了linux系统目录结构,通过结构图和多张表格了解linux系统目录结构,感兴趣的小伙伴们可以参考一...

    结构 目录 系统 linux

    PHP程序员玩转Linux系列 Linux和Windows安装

    这篇文章主要为大家详细介绍了PHP程序员玩转Linux系列文章,Linux和Windows安装nginx教程,具有一定的参考价值,感兴趣...

    玩转 程序员 安装 系列 PHP

    win10怎么安装杜比音效Doby V4.1 win10安装杜

    第四代杜比®家庭影院®技术包含了一整套协同工作的技术,让PC 发出清晰的环绕声同时第四代杜比家庭影院技术...

    win10杜比音效

    纯CSS实现iOS风格打开关闭选择框功能

    这篇文章主要介绍了纯CSS实现iOS风格打开关闭选择框,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作...

    css ios c

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的办法

    Win7如何给C盘扩容 Win7系统电脑C盘扩容的

    Win7给电脑C盘扩容的办法大家知道吗?当系统分区C盘空间不足时,就需要给它扩容了,如果不管,C盘没有足够的空间...

    Win7 C盘 扩容

    百度推广竞品词的投放策略

    SEM是基于关键词搜索的营销活动。作为推广人员,我们所做的工作,就是打理成千上万的关键词,关注它们的质量度...

    百度推广 竞品词

    Visual Studio Code(vscode) git的使用教程

    这篇文章主要介绍了详解Visual Studio Code(vscode) git的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。...

    教程 Studio Visual Code git

    七牛云储存创始人分享七牛的创立故事与

    这篇文章主要介绍了七牛云储存创始人分享七牛的创立故事与对Go语言的应用,七牛选用Go语言这门新兴的编程语言进行...

    七牛 Go语言

    Win10预览版Mobile 10547即将发布 9月19日上午

    微软副总裁Gabriel Aul的Twitter透露了 Win10 Mobile预览版10536即将发布,他表示该版本已进入内部慢速版阶段,发布时间目...

    Win10 预览版

    HTML标签meta总结,HTML5 head meta 属性整理

    移动前端开发中添加一些webkit专属的HTML5头部标签,帮助浏览器更好解析HTML代码,更好地将移动web前端页面表现出来...

    移动端html5模拟长按事件的实现方法

    这篇文章主要介绍了移动端html5模拟长按事件的实现方法的相关资料,小编觉得挺不错的,现在分享给大家,也给大家...

    移动端 html5 长按

    HTML常用meta大全(推荐)

    这篇文章主要介绍了HTML常用meta大全(推荐),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参...

    cdr怎么把图片转换成位图? cdr图片转换为位图的教程

    cdr怎么把图片转换成位图? cdr图片转换为

    cdr怎么把图片转换成位图?cdr中插入的图片想要转换成位图,该怎么转换呢?下面我们就来看看cdr图片转换为位图的...

    cdr 图片 位图

    win10系统怎么录屏?win10系统自带录屏详细教程

    win10系统怎么录屏?win10系统自带录屏详细

    当我们是使用win10系统的时候,想要录制电脑上的画面,这时候有人会想到下个第三方软件,其实可以用电脑上的自带...

    win10 系统自带录屏 详细教程

    + 更多教程 +
    ASP编程JSP编程PHP编程.NET编程python编程